Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Exp Hematol ; : 104255, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876252

ABSTRACT

The genetic lesions that drive acute megakaryoblastic leukemia (AMKL) have not been fully elucidated. To search for genetic alterations in AMKL, we performed targeted deep sequencing in 34 AMKL patient samples and 8 AMKL cell lines and detected frequent genetic mutations in the NOTCH pathway in addition to previously reported alterations in GATA-1 and the JAK-STAT pathway. Pharmacological and genetic NOTCH activation, but not inhibition, significantly suppressed AMKL cell proliferation in both in vitro and in vivo assays employing a patient-derived xenograft model. These results suggest that NOTCH inactivation underlies AMKL leukemogenesis. and NOTCH activation holds the potential for therapeutic application in AMKL.

2.
Cell Rep ; 8(3): 767-82, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25066130

ABSTRACT

The RUNX genes encode transcription factors involved in development and human disease. RUNX1 and RUNX3 are frequently associated with leukemias, yet the basis for their involvement in leukemogenesis is not fully understood. Here, we show that Runx1;Runx3 double-knockout (DKO) mice exhibited lethal phenotypes due to bone marrow failure and myeloproliferative disorder. These contradictory clinical manifestations are reminiscent of human inherited bone marrow failure syndromes such as Fanconi anemia (FA), caused by defective DNA repair. Indeed, Runx1;Runx3 DKO cells showed mitomycin C hypersensitivity, due to impairment of monoubiquitinated-FANCD2 recruitment to DNA damage foci, although FANCD2 monoubiquitination in the FA pathway was unaffected. RUNX1 and RUNX3 interact with FANCD2 independently of CBFß, suggesting a nontranscriptional role for RUNX in DNA repair. These findings suggest that RUNX dysfunction causes DNA repair defect, besides transcriptional misregulation, and promotes the development of leukemias and other cancers.


Subject(s)
Bone Marrow/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/genetics , DNA Repair , Fanconi Anemia/genetics , Leukemia/genetics , Animals , Bone Marrow/pathology , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/metabolism , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group D2 Protein/metabolism , Gene Deletion , Genetic Predisposition to Disease , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Leukemia/metabolism , Mice , Mice, Inbred C57BL
3.
PLoS One ; 9(2): e89397, 2014.
Article in English | MEDLINE | ID: mdl-24586749

ABSTRACT

The ecotropic viral integration site 1 (Evi1) oncogenic transcription factor is one of a number of alternative transcripts encoded by the Mds1 and Evi1 complex locus (Mecom). Overexpression of Evi1 has been observed in a number of myeloid disorders and is associated with poor patient survival. It is also amplified and/or overexpressed in many epithelial cancers including nasopharyngeal carcinoma, ovarian carcinoma, ependymomas, and lung and colorectal cancers. Two murine knockout models have also demonstrated Evi1's critical role in the maintenance of hematopoietic stem cell renewal with its absence resulting in the death of mutant embryos due to hematopoietic failure. Here we characterize a novel mouse model (designated Evi1(fl3)) in which Evi1 exon 3, which carries the ATG start, is flanked by loxP sites. Unexpectedly, we found that germline deletion of exon3 produces a hypomorphic allele due to the use of an alternative ATG start site located in exon 4, resulting in a minor Evi1 N-terminal truncation and a block in expression of the Mds1-Evi1 fusion transcript. Evi1(δex3/δex3) mutant embryos showed only a mild non-lethal hematopoietic phenotype and bone marrow failure was only observed in adult Vav-iCre/+, Evi1(fl3/fl3) mice in which exon 3 was specifically deleted in the hematopoietic system. Evi1(δex3/δex3) knockout pups are born in normal numbers but die during the perinatal period from congenital heart defects. Database searches identified 143 genes with similar mutant heart phenotypes as those observed in Evi1(δex3/δex3) mutant pups. Interestingly, 42 of these congenital heart defect genes contain known Evi1-binding sites, and expression of 18 of these genes are also effected by Evi1 siRNA knockdown. These results show a potential functional involvement of Evi1 target genes in heart development and indicate that Evi1 is part of a transcriptional program that regulates cardiac development in addition to the development of blood.


Subject(s)
Alleles , DNA-Binding Proteins/genetics , Genetic Association Studies , Heart Defects, Congenital/genetics , Proto-Oncogenes/genetics , Transcription Factors/genetics , Animals , Animals, Newborn , Base Sequence , Bone Marrow/pathology , DNA-Binding Proteins/chemistry , Disease Models, Animal , Exons , Gene Deletion , Gene Expression Regulation, Developmental , Genes, Lethal , Heart Defects, Congenital/mortality , Heart Defects, Congenital/pathology , Heart Defects, Congenital/physiopathology , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Immunophenotyping , MDS1 and EVI1 Complex Locus Protein , Mice , Mice, Knockout , Molecular Sequence Data , Mutation , Phenotype , Sequence Alignment , Severity of Illness Index , Transcription Factors/chemistry
4.
Food Chem ; 156: 227-33, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24629962

ABSTRACT

Curcumin has been shown to have a wide variety of biological activities for various human diseases including inflammation, diabetes and cancer. However, the poor oral bioavailability of curcumin poses a significant pharmacological barrier to its use therapeutically and/or as a functional food. Here we report the evaluation of the bioavailability and bio-efficacy of curcumin as an amorphous solid dispersion (ASD) in a matrix consisting of hydroxypropyl methyl cellulose (HPMC), lecithin and isomalt using hot melt extrusion for application in food products. Oral pharmacokinetic studies in rats showed that ASD curcumin was ∼13-fold more bioavailable compared to unformulated curcumin. Evaluation of the anti-inflammatory activity of ASD curcumin in vivo demonstrated enhanced bio-efficacy compared to unformulated curcumin at 10-fold lower dose. Thus ASD curcumin provides a more potent and efficacious formulation of curcumin which may also help in masking the colour, taste and smell which currently limit its application as a functional food ingredient.


Subject(s)
Curcumin/pharmacology , Animals , Biological Availability , Curcumin/pharmacokinetics , Humans , Rats
5.
Blood Cells Mol Dis ; 44(4): 275-86, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20144877

ABSTRACT

In multicellular organisms, terminally differentiated cells of most tissues are short-lived and therefore require constant replenishment from rapidly dividing stem cells for homeostasis and tissue repair. For the stem cells to last throughout the lifetime of the organism, however, a small subset of stem cells, which are maintained in a hibernation-like state known as stem cell quiescence, is required. Such dormant stem cells reside in the niche and are activated into proliferation only when necessary. A multitude of factors are required for the maintenance of stem cell quiescence and niche. In particular, the Runx family genes have been implicated in stem cell quiescence in various organisms and tissues. In this review, we discuss the maintenance of stem cell quiescence in various tissues, mainly in the context of the Runx family genes, and with special focus on the hematopoietic system.


Subject(s)
Core Binding Factor alpha Subunits/physiology , Gene Expression Regulation, Developmental , Multigene Family , Stem Cells/cytology , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Core Binding Factor Alpha 2 Subunit/deficiency , Core Binding Factor Alpha 2 Subunit/physiology , Core Binding Factor alpha Subunits/genetics , G1 Phase/genetics , Genes, Helminth , Hematopoiesis/genetics , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Humans , Intestine, Small/cytology , Liver/cytology , Mice , Organ Specificity , Resting Phase, Cell Cycle/genetics , Skin/cytology , Stem Cells/metabolism , Transcription Factors/genetics , Transcription Factors/physiology
6.
Blood ; 115(8): 1610-20, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20008790

ABSTRACT

The RUNX1/AML1 gene is the most frequently mutated gene in human leukemia. Conditional deletion of Runx1 in adult mice results in an increase of hematopoietic stem cells (HSCs), which serve as target cells for leukemia; however, Runx1(-/-) mice do not develop spontaneous leukemia. Here we show that maintenance of Runx1(-/-) HSCs is compromised, progressively resulting in HSC exhaustion. In leukemia development, the stem cell exhaustion was rescued by additional genetic changes. Retroviral insertional mutagenesis revealed Evi5 activation as a cooperating genetic alteration and EVI5 overexpression indeed prevented Runx1(-/-) HSC exhaustion in mice. Moreover, EVI5 was frequently overexpressed in human RUNX1-related leukemias. These results provide insights into the mechanism for maintenance of pre-leukemic stem cells and may provide a novel direction for therapeutic applications.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Core Binding Factor Alpha 2 Subunit , Hematopoietic Stem Cells/metabolism , Leukemia/metabolism , Nuclear Proteins , Transcription Factors , Animals , Cell Cycle Proteins , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , GTPase-Activating Proteins , Hematopoietic Stem Cells/pathology , Humans , Leukemia/genetics , Leukemia/pathology , Mice , Mice, Knockout
7.
Blood ; 114(23): 4859-70, 2009 Nov 26.
Article in English | MEDLINE | ID: mdl-19805619

ABSTRACT

Deregulated cell survival programs are a classic hallmark of cancer. We have previously identified a serine residue (Ser585) in the betac subunit of the granulocyte-macrophage colony-stimulating factor receptor that selectively and independently promotes cell survival. We now show that Ser585 phosphorylation is constitutive in 20 (87%) of 23 acute myeloid leukemia (AML) patient samples, indicating that this survival-only pathway is frequently deregulated in leukemia. We performed a global expression screen to identify gene targets of this survival pathway and report a 138-gene betac Ser585-regulated transcriptome. Pathway analysis defines a gene network enriched for PI3-kinase target genes and a cluster of genes involved in cancer and cell survival. We show that one such gene, osteopontin (OPN), is a functionally relevant target of the Ser585-survival pathway as shown by siRNA-mediated knockdown of OPN expression that induces cell death in both AML blasts and CD34(+)CD38(-)CD123(+) leukemic progenitors. Increased expression of OPN at diagnosis is associated with poor prognosis with multivariate analysis indicating that it is an independent predictor of overall patient survival in normal karyotype AML (n = 60; HR = 2.2; P = .01). These results delineate a novel cytokine-regulated Ser585/PI3-kinase signaling network that is deregulated in AML and identify OPN as a potential prognostic and therapeutic target.


Subject(s)
Gene Expression Profiling , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid/genetics , Neoplasm Proteins/physiology , Osteopontin/physiology , Adult , Aged , Cell Survival , Cytokine Receptor Common beta Subunit/metabolism , Female , Gene Expression Regulation, Leukemic , Gene Knockdown Techniques , Gene Regulatory Networks , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Humans , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/mortality , Leukemia, Myeloid/pathology , Male , Middle Aged , Neoplasm Proteins/genetics , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Osteopontin/biosynthesis , Osteopontin/genetics , Phosphatidylinositol 3-Kinases/physiology , Phosphoinositide-3 Kinase Inhibitors , Phosphoserine/metabolism , Prognosis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , RNA, Small Interfering/pharmacology , Signal Transduction/genetics , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/metabolism , Tumor Cells, Cultured/pathology
8.
J Cell Biochem ; 107(3): 393-9, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19347871

ABSTRACT

Cancer is the result of a combination of genetic alterations, which aid transformation of cells. However, oncogenic alterations also simultaneously induce some detrimental effects on the cells such as apoptosis, senescence, and differentiation. Such negative effects caused by certain oncogenic events are overcome by other cooperating genetic hits. We propose stem cell exhaustion as a novel detrimental effect that is caused by a wide variety of oncogenic alterations. Interestingly, in most cases, the stem cell exhaustion due to oncogenic alterations is preceded by an abnormal expansion of stem/progenitor cells. This preceding stem/progenitor cell expansion may be a key feature that still promotes cancer development, along with cooperating hits that rescue stem cell exhaustion. This review summarizes current knowledge about hematopoietic stem cell exhaustion and the mechanisms to overcome stem cell exhaustion in cancer development.


Subject(s)
Leukemia/etiology , Stem Cells/cytology , Animals , Cell Differentiation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Leukemia/genetics , Leukemia/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Stem Cells/metabolism
9.
Stem Cells ; 25(12): 2976-86, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17823240

ABSTRACT

The RUNX1/AML1 gene encodes a transcription factor essential for the generation of hematopoietic stem cells and is frequently targeted in human leukemia. In human RUNX1-related leukemias, the RAS pathway is often concurrently mutated, but the mechanism of the synergism remains elusive. Here, we found that inactivation of Runx1 in mouse bone marrow cells results in an increase in the stem/progenitor cell fraction due to suppression of apoptosis and elevated expression of the polycomb gene Bmi-1, which is important for stem cell self-renewal. Introduction of oncogenic N-RAS into wild-type cells, in contrast, reduced the stem/progenitor cell fraction because of senescence, apoptosis, and differentiation. Such detrimental events presumably occurred because of the cellular fail-safe program, although hyperproliferation was initially induced by an oncogenic stimulus. Runx1 insufficiency appears to impair such a fail-safe mechanism, particularly in the stem/progenitor cells, thereby supporting the clonal maintenance of leukemia-initiating cells expressing an activated oncogene. Disclosure of potential conflicts of interest is found at the end of this article.


Subject(s)
Core Binding Factor Alpha 2 Subunit/physiology , Genes, ras/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Leukemia, Experimental/metabolism , Leukemia, Experimental/prevention & control , Animals , Apoptosis/genetics , Cell Survival/genetics , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Core Binding Factor Alpha 2 Subunit/deficiency , Core Binding Factor Alpha 2 Subunit/genetics , Humans , Leukemia, Experimental/genetics , Leukemia, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism
10.
Oncogene ; 24(28): 4477-85, 2005 Jun 30.
Article in English | MEDLINE | ID: mdl-15856017

ABSTRACT

The RUNX1/AML1 gene on chromosome 21 is most frequently inactivated in human leukemias. In addition, an increased dose of RUNX1 is suggested as a basis for several kinds of leukemias. Amplifications of chromosome 21 or the RUNX1 gene are shown to be associated with leukemias with lymphoid lineage, whereas its involvement in myeloid lineage remains unclear. In this study, we generated GATA-1 promoter-driven Runx1 transgenic (Tg) mice, which showed a transient mild increase of megakaryocyte marker-positive myeloid cells but no spontaneous leukemia. These mice were then crossed with BXH2 mice, which have a replication-competent retrovirus in the mouse and develop myeloid leukemia due to insertional mutagenesis by random integration of the virus. Overexpressed Runx1 transgene in BXH2 mice resulted in shortening of the latency of leukemia with increased frequency of megakaryoblastic leukemia, suggesting that increased Runx1 dosage is leukemogenic in myeloid lineage. Identifications of retroviral integration sites revealed the genetic alterations that may cooperate with Runx1 overdose in myeloid leukemogenesis. This mouse model may be useful for analysing the pathogenesis of myeloid leukemias with RUNX1 overdose, especially to examine whether an extra-copy of RUNX1 by trisomy 21 is causally related to Down's syndrome-related acute megakaryoblastic leukemia (DS-AMKL).


Subject(s)
DNA-Binding Proteins/genetics , Gene Dosage , Leukemia, Myeloid/genetics , Proto-Oncogene Proteins/genetics , Transcription Factors/genetics , Animals , Core Binding Factor Alpha 2 Subunit , DNA Transposable Elements , DNA-Binding Proteins/metabolism , Disease Models, Animal , Erythroid-Specific DNA-Binding Factors , GATA1 Transcription Factor , Gene Expression Regulation, Leukemic , Humans , Integrin beta3/genetics , Integrin beta3/immunology , Leukemia, Myeloid/pathology , Leukocytes/immunology , Leukocytes/pathology , Mice , Mice, Mutant Strains , Mice, Transgenic , Promoter Regions, Genetic , Proto-Oncogene Proteins/metabolism , Retroviridae/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...