Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 96(3): e20230811, 2024.
Article in English | MEDLINE | ID: mdl-38865509

ABSTRACT

Cancer is a complex and multifactorial disease characterized by uncontrolled cell growth and is one of the main causes of death in the world. This work aimed to evaluate a small series of 10 different indole-thiosemicarbazone compounds as potential antitumor agents. This is a pioneering study. For this, the antioxidant and cytotoxic capacity against normal and tumor cells was evaluated. The results showed that the compounds were able to promote moderate to low antioxidant activity for the ABTS radical scavenging assay. ADMET in silico assays showed that the compounds exhibited good oral bioavailability. As for toxicity, they were able to promote low cytotoxicity against normal cells, in addition to not being hemolytic. The compounds showed promising in vitro antitumor activity against the T47D, MCF-7, Jurkat and DU-145 strains, not being able to inhibit the growth of the Hepg2 strain. Through this in vitro study, it can be concluded that the compounds are potential candidates for antitumor agents.


Subject(s)
Antineoplastic Agents , Antioxidants , Indoles , Thiosemicarbazones , Humans , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacokinetics , Indoles/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antioxidants/pharmacology , Cell Line, Tumor , Computer Simulation , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects
2.
Exp Parasitol ; 236-237: 108253, 2022.
Article in English | MEDLINE | ID: mdl-35381223

ABSTRACT

Neglected diseases, such as Leishmaniasis, constitute a group of communicable diseases that occur mainly in tropical countries. Considered a public health problem with limited treatment. Therefore, there is a need for new therapies. In this sense, our proposal was to evaluate in vitro two series of thiazolidine compounds (7a-7e and 8a-8e) against Leishmania infantum. We performed in vitro evaluations through macrophage cytotoxicity assays (J774) and nitric oxide production, activity against promastigotes and amastigotes, as well as ultrastructural analyzes in promastigotes. In the evaluation of cytotoxicity, the thiazolidine compounds presented CC50 values between 8.52 and 126.83 µM. Regarding the evaluation against the promastigote forms, the IC50 values ranged between 0.42 and 142.43 µM. Compound 7a was the most promising, as it had the lowest IC50. The parasites treated with compound 7a showed several changes, such as cell body shrinkage, shortening and loss of the flagellum, intense mitochondrial edema and cytoplasmic vacuolization, leading the parasite to cell inviability. In assays against the amastigote forms, the compound showed a low IC50 (0.65 µM). These results indicate that compound 7a was efficient for both evolutionary forms of the parasite. In silico studies suggest that the compound has good oral bioavailability. These results show that compound 7a is a potential drug candidate for the treatment of Leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Leishmaniasis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/toxicity , Humans , Leishmaniasis/drug therapy , Macrophages/parasitology , Thiazolidines/toxicity
3.
Pharmacol Rep ; 73(3): 907-925, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33590474

ABSTRACT

BACKGROUND: In this article, a series of 20 new thiosemicarbazone derivatives containing indole were synthesized and evaluated for their anti-inflammatory potential. METHODS: The compounds were obtained through a synthetic route of only two steps, with yields that varied between 33.6 and 90.4%, and characterized by spectroscopic and spectrometric techniques. RESULTS: An initial screening through the lymphoproliferation assay revealed that compounds LT76, LT81, and LT87 were able to inhibit lymphocyte proliferation, with CC50 of 0.56 ± 0.036, 0.9 ± 0.01 and 0.5 ± 0.07 µM, respectively, better results than indomethacin (CC50 > 12 µM). In addition, these compounds were able to suppress the in-vitro production of TNF-α and NO, in addition to stimulating the production of IL-4. Reinforcing in-vitro assays, the compounds were able to inhibit COX-2 similar to Celecoxib showing greater selectivity for this isoform (LT81 SI: 23.06 versus Celecoxib SI: 11.88). Animal studies showed that compounds LT76 (64.8% inhibition after 6 h), LT81 (89% inhibition after 6 h) and LT87 (100% inhibition after 4 h) were able to suppress edema in mice after inoculation carrageenan with greater potency than indomethacin, and immunohistochemistry revealed that the groups treated with LT76, LT81 and LT87 reduced the expression of COX-2, similar or better results when compared to indomethacin. Complementarily, in-silico studies have shown that these compounds have a good pharmacokinetic profile, for respecting the parameters of Lipinski and Veber, showing their good bioavailability. CONCLUSIONS: These results demonstrate the potency of thiosemicarbazone derivatives containing indole and confirm their importance as scaffolds of molecules with notorious anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 1/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Thiosemicarbazones/pharmacology , Animals , Carrageenan/pharmacology , Celecoxib/pharmacology , Cell Proliferation/drug effects , Edema/drug therapy , Edema/metabolism , Indoles/pharmacology , Indomethacin/pharmacology , Lymphocytes/drug effects , Lymphocytes/metabolism , Male , Mice , Mice, Inbred BALB C
4.
Comb Chem High Throughput Screen ; 20(8): 713-718, 2017.
Article in English | MEDLINE | ID: mdl-28738767

ABSTRACT

AIM AND OBJECTIVE: Cancer has become one of the leading causes of morbidity and mortality worldwide. Limitations associated with existing agents increase the need to develop more effective anticancer drugs to improve the therapeutic arsenal available. The aim of this study was to synthesize and evaluate the antiproliferative effects of three new thiazacridine derivatives. MATERIAL AND METHODS: Using a three steps synthesis reaction, three novel thiazacridine derivatives were obtained and characterized: (Z)-5-acridin-9-ylmethylene-3-(4-methyl-benzyl)-4-thioxo-thiazolidin- 2-one (LPSF/AC-99), (Z)-5-acridin-9-ylmethylene-3-(4-chloro-benzyl)-4-thioxo-thiazolidin-2- one (LPSF/AC-119) and (Z)-5-acridin-9-ylmethylene-3-(3-chloro-benzyl)-4-thioxo-thiazolidin-2- one (LPSF/AC-129). Toxicity and selectivity assays were performed by colorimetric assay. Then, changes in cell cycle and cell death induction mechanisms were assessed by flow cytometry. RESULTS: All compounds exhibited cytotoxicity to Raji (Burkitt's lymphoma) and Jurkat (acute T cell leukemia) cells, where LPSF/AC-119 showed best IC50 values (0.6 and 1.53 µ M, respectively). LPSF/AC-129 was the only cytotoxic compound in glioblastoma cell line NG97 (IC50 = 55.77 µ M). None of the compounds were toxic to normal human cells and induced neoplastic cell death primarily by apoptosis. CONCLUSION: All derivatives were more cytotoxic to hematopoietic neoplastic cells when compared to solid tumor derived cells. All three compounds are promising for in vivo and combination therapy studies against cancer.


Subject(s)
Acridines/pharmacology , Antineoplastic Agents/pharmacology , Hematologic Neoplasms/drug therapy , Acridines/chemical synthesis , Acridines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hematologic Neoplasms/pathology , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...