Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 21(27): 5592-5600, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37358265

ABSTRACT

An expedient and operationally convenient mechanochemical synthesis of aryl/heteroaryl N-sulfonyl imines is reported by reacting iminoiodinanes with numerous aryl/heteroaryl benzyl alcohols in ball milling apparatus (RETSCH 400™) with three 5 mm stainless steel (ss) balls in a 5 mL stainless steel (ss) reaction jar. CHCl3 (η = 0.2-0.4 µL mg-1) was used as a liquid assisted grinding (LAG) auxiliary. This metal catalyst- and base- free synthesis with nominal amounts of solvents (as LAGs) demonstrated an efficient N-sulfonyl transfer reaction from iminoiodinanes to afford the desired compounds in moderate to good yields. Substituted N-sulfonyl imines are crucial as standalone natural product building blocks and drug intermediates as well as precursors of sulfonamides which have been involved in potential small molecule therapy in many therapeutic programs. The putative mechanisms of the transformations are discussed based on control reactions and DFT calculations.

2.
J Phys Chem A ; 127(4): 886-893, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36653147

ABSTRACT

A comparative new strategy to enhance thermally activated delayed fluorescence (TADF) of through-space charge transfer (CT) molecules in organic light-emitting diodes (OLEDs) is investigated. Generally, TADF molecules adopt a twisted donor and acceptor structure to get a sufficiently small ΔEST and a higher value of the spin-orbit coupling matrix element (SOCME). However, molecules containing donor-phenyl bridge-acceptor (D-p-A) units and featuring π-stacked architectures have intramolecular CT contribution through space and exhibit high TADF efficiency. We have explored the insights into the TADF mechanism in D-p-A molecules using the density functional theory (DFT) and time-dependent DFT methods. The calculated optical absorption and ΔEST values are found to be in good agreement with available experimental data. Interestingly, we found the origin of the SOCME to be the twisted orientation of the donor and bridge moieties. Also, we predicted similar molecules with enhanced OLED efficiency with different substitutions.

3.
Food Chem ; 373(Pt B): 131499, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34763936

ABSTRACT

Curcumin, a ubiquitous dietary molecule, is a versatile antioxidant that fights against free radicals. The antioxidant activity of curcumin and its structural analogues such as hispolon, halfcurcumin and polyhydroxycurcumin is analyzed using density functional theory (DFT). The thermochemical parameter, bond dissociation enthalpy (BDE) is used to analyse the propensity of radical attack. The hydrogen atom transfer (HAT) energetics for the hydroxyl groups of the antioxidant molecules with •OH and •OOH in both gas and solvent media are explored. Based on ourresults, hispolon and polyhydroxycurcumin characterized by multiple hydroxyl groups arranged in ortho dihydroxy fashion are good radical scavengers. Halfcurcumin exhibited comparatively similar activity as that of curcumin. The absorption properties of these molecules are in good agreement with the reported experimental findings. The molecular docking studies revealed that these antioxidants can indirectly control the oxidative stress by favourably interacting with the pro-oxidant enzyme like xanthine oxidase.


Subject(s)
Antioxidants , Curcumin , Free Radical Scavengers , Molecular Docking Simulation , Reactive Oxygen Species , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...