Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
1.
Circ Res ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828596

ABSTRACT

BACKGROUND: Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS: We generated LDL receptor-deficient (Ldlr-/-) mouse models of T1D expressing human APOA1 (apolipoprotein A1). Ldlr-/-APOA1Tg mice exhibited the main human HDL subspecies. We also generated Ldlr-/-APOA1Tg T1D mice expressing CETP (cholesteryl ester transfer protein), which had lower concentrations of large HDL subspecies versus mice not expressing CETP. HDL particle concentrations and sizes and proteins involved in lipoprotein metabolism were measured by calibrated differential ion mobility analysis and targeted mass spectrometry in the mouse models of T1D and in a cohort of individuals with T1D. Endothelial transcytosis was analyzed by total internal reflection fluorescence microscopy. RESULTS: Diabetic Ldlr-/-APOA1Tg mice were severely hyperglycemic and hyperlipidemic and had markedly elevated plasma APOB levels versus nondiabetic littermates but were protected from the proatherogenic effects of diabetes. Diabetic Ldlr-/-APOA1Tg mice expressing CETP lost the atheroprotective effect and had increased lesion necrotic core areas and APOB accumulation, despite having lower plasma APOB levels. The detrimental effects of low concentrations of larger HDL particles in diabetic mice expressing CETP were not explained by reduced cholesterol efflux. Instead, large HDL was more effective than small HDL in preventing endothelial transcytosis of LDL mediated by scavenger receptor class B type 1. Finally, in humans with T1D, increased concentrations of larger HDLs relative to APOB100 negatively predicted incident CVD independently of HDL-cholesterol levels. CONCLUSIONS: Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.

2.
Nucleic Acids Res ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850156

ABSTRACT

Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1) ORF2-encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 (Alu-permissive) strains, but not in HeLa-JVM or HeLa-H1 (Alu-nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA-derived SINEs and tRNA-derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR-Alu (SVA) element, and an L1 ORF1-containing mRNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu-permissive and Alu-nonpermissive HeLa strains, suggesting that 7SL- and tRNA-derived SINEs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1-containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu-permissive and Alu-nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu-nonpermissive HeLa strains.

3.
Cureus ; 16(4): e59018, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38800303

ABSTRACT

Introduction Previous studies have demonstrated an increased incidence of gastrointestinal (GI) pathologies, specifically celiac disease (CD) and eosinophilic esophagitis (EoE), in patients with cystic fibrosis (CF). However, there is minimal data available regarding endoscopic findings in pediatric patients with CF and GI mucosal disease.  Methods A retrospective chart review was performed on patients with CF under 18 years of age who underwent esophagogastroduodenoscopy (EGD) or colonoscopy with biopsy over a 15-year period at our institution. Patient characteristics including assigned sex at birth, CF genetic mutations (if identified), and cystic fibrosis transmembrane conductance regulator (CFTR) modulator use were recorded. Data obtained at the time of biopsy included body mass index (BMI), indication for the procedure, exocrine pancreatic status, visual endoscopic findings, and histologic findings. Results A total of 72 patients with CF were included in the study. 24% (n=17) were found to have abnormal endoscopic biopsy results. EoE (13% of all patients, n=9) and CD (6% of all patients, n=4) were the most common GI diagnoses present on endoscopic biopsy. All 3 patients taking CFTR modulator medications at the time of endoscopy had normal biopsy results. Of the 17 patients found to have abnormal pathology results, 14 (82%) were taking proton-pump inhibitor (PPI) medication at the time of endoscopy. Conclusion This study highlights the probable increased frequency of GI disease in the pediatric CF population. These findings underscore the importance of maintaining a broad differential diagnosis while considering utilization of endoscopy with biopsy in pediatric patients with CF who have GI symptoms.

4.
bioRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746229

ABSTRACT

Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1 or L1) ORF2 -encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 ( Alu -permissive) strains, but not in HeLa-JVM or HeLa-H1 ( Alu -nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA -derived SINEs and tRNA -derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR - Alu ( SVA ) element, and an L1 ORF1 -containing messenger RNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu -permissive and Alu -nonpermissive HeLa strains, suggesting that 7SL - and tRNA -derived SINE RNAs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1 -containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu -permissive and Alu -nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu -nonpermissive HeLa strains.

5.
Data Brief ; 53: 110146, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38375141

ABSTRACT

African locust bean (Parkia biglobosa) is a multipurpose leguminous tree species of nutritional and pharmacological value. The plant is widely distributed in Africa and across Nigeria's major agroecological areas (AEAs). Amidst declining cultivation and production, P. biglobosa is genetically threatened in its natural habitats due to overexploitation, deforestation, wildfires and lack of improved tree management practices. Consequently, concerted research efforts directed towards germplasm collection and assessment of genetic relationships are imperative for conserving its genetic resources, sustainable management and selecting promising landraces for breeding programmes. The dataset presents rbcL intraspecific genetic diversity and population structure of 62 P. biglobosa landraces in Nigeria. A relatively high level of diversity and a low degree of nucleotide variability was observed among the landraces. Relatively high values of 642 total allele sites, 601 polymorphic sites, 504 parsimony information sites, 883 total number mutations, 9 haplotypes and 0.55 gene diversity were recorded for the sequence dataset. Low values of 0.35 nucleotide diversity and 5 InDels events were also recorded for the dataset. The gene flow in this dataset demonstrated an extensive exchange of genes between the three populations of P. biglobosa, which influenced the level of genetic differentiation (Gst) between the populations. Significantly low Gst (-0.01) was recorded between the Guinea and Sudan savannah populations, a moderate value (0.03) was recorded between the Sudan savannah and Rainforest populations and a higher Gst value (0.05) was recorded between the Guinea and Rainforest populations. The dataset highlights potential evolutionary dynamics that might influence variations relevant to the breeding and conservation of P. biglobosa in Nigeria and across its range in West and Central Africa.

6.
Genet Med ; 26(5): 101097, 2024 May.
Article in English | MEDLINE | ID: mdl-38334070

ABSTRACT

PURPOSE: Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4-/- cells. METHODS: The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes. Fluorescence-activated cell sorting separated cells with correction of the enlarged lysosomes from uncorrected cells. Patient variants of SLC12A9 were identified by exome or genome sequencing and studied by segregation analysis and clinical characterization. RESULTS: Overexpression of SLC12A9, a solute co-transporter, corrected lysosomal swelling in FIG4-/- cells. SLC12A9 (NP_064631.2) colocalized with LAMP2 at the lysosome membrane. Biallelic variants of SLC12A9 were identified in 3 unrelated probands with neurodevelopmental disorders. Common features included intellectual disability, skeletal and brain structural abnormalities, congenital heart defects, and hypopigmented hair. Patient 1 was homozygous for nonsense variant p.(Arg615∗), patient 2 was compound heterozygous for p.(Ser109Lysfs∗20) and a large deletion, and proband 3 was compound heterozygous for p.(Glu290Glyfs∗36) and p.(Asn552Lys). Fibroblasts from proband 1 contained enlarged lysosomes that were corrected by wild-type SLC12A9 cDNA. Patient variant p.(Asn552Lys) failed to correct the lysosomal defect. CONCLUSION: Impaired function of SLC12A9 results in enlarged lysosomes and a recessive disorder with a recognizable neurodevelopmental phenotype.


Subject(s)
Lysosomes , Neurodevelopmental Disorders , Sodium-Potassium-Chloride Symporters , Child , Child, Preschool , Female , Humans , Infant , Male , Alleles , Loss of Function Mutation/genetics , Lysosomes/genetics , Lysosomes/metabolism , Lysosomes/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Pedigree , Phenotype , Sodium-Potassium-Chloride Symporters/genetics
7.
J Equine Vet Sci ; 133: 104993, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171452

ABSTRACT

Though generally safe, research continues to demonstrate negative side effects of antibiotic administration on the gastrointestinal (GIT) microbiota across species. In horses, antibiotic associated diarrhea (AAD) is a life-threatening condition linked to the GIT microbiota. This study tested the hypothesis that short term antibiotic administration to healthy horses would negatively impact the fecal microbiota as measured by their ability to digest nutrients and through fecal shedding of disease-associated-bacteria. Twenty-four horses were assigned to one of four treatment groups: control (CO); potassium penicillin/gentamicin sulfate (KPG); ceftiofur crystalline free acid (EX); trimethoprim/sulfamethoxazole (SMZ); and treated for 4 days. Fecal samples were collected before treatment began (S0), the day after treatment conclusion (S5), and at 10, 14, 21, and 28 days after initiating treatment. Horses had highly individualized responses to antibiotic administration. All horses receiving antibiotics experienced significantly softer stool compared to controls. Lactobacillus spp. were dramatically reduced in all antibiotic treated S5 samples. Horses receiving antibiotics were significantly more likely to test positive for C. difficile or C. perfringens on fecal qPCR. In conclusion, response to antibiotic administration displays high inter-individual variability, but shows changes to the functions of fecal microbiota that may depend on the antibiotic used.


Subject(s)
Clostridioides difficile , Microbiota , Animals , Horses , Anti-Bacterial Agents/adverse effects , Feces/microbiology , Bacteria
8.
J Immunol ; 212(1): 117-129, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38019121

ABSTRACT

The vascular endothelium acts as a dynamic interface between blood and tissue. TNF-α, a major regulator of inflammation, induces endothelial cell (EC) transcriptional changes, the overall response dynamics of which have not been fully elucidated. In the present study, we conducted an extended time-course analysis of the human EC response to TNF, from 30 min to 72 h. We identified regulated genes and used weighted gene network correlation analysis to decipher coexpression profiles, uncovering two distinct temporal phases: an acute response (between 1 and 4 h) and a later phase (between 12 and 24 h). Sex-based subset analysis revealed that the response was comparable between female and male cells. Several previously uncharacterized genes were strongly regulated during the acute phase, whereas the majority in the later phase were IFN-stimulated genes. A lack of IFN transcription indicated that this IFN-stimulated gene expression was independent of de novo IFN production. We also observed two groups of genes whose transcription was inhibited by TNF: those that resolved toward baseline levels and those that did not. Our study provides insights into the global dynamics of the EC transcriptional response to TNF, highlighting distinct gene expression patterns during the acute and later phases. Data for all coding and noncoding genes is provided on the Web site (http://www.endothelial-response.org/). These findings may be useful in understanding the role of ECs in inflammation and in developing TNF signaling-targeted therapies.


Subject(s)
Endothelium, Vascular , Gene Expression Profiling , Male , Humans , Female , Endothelium, Vascular/metabolism , Endothelial Cells/metabolism , Signal Transduction , Cells, Cultured , Inflammation/genetics , Inflammation/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Genome Biol ; 24(1): 294, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129864

ABSTRACT

BACKGROUND: Variants that disrupt mRNA splicing account for a sizable fraction of the pathogenic burden in many genetic disorders, but identifying splice-disruptive variants (SDVs) beyond the essential splice site dinucleotides remains difficult. Computational predictors are often discordant, compounding the challenge of variant interpretation. Because they are primarily validated using clinical variant sets heavily biased to known canonical splice site mutations, it remains unclear how well their performance generalizes. RESULTS: We benchmark eight widely used splicing effect prediction algorithms, leveraging massively parallel splicing assays (MPSAs) as a source of experimentally determined ground-truth. MPSAs simultaneously assay many variants to nominate candidate SDVs. We compare experimentally measured splicing outcomes with bioinformatic predictions for 3,616 variants in five genes. Algorithms' concordance with MPSA measurements, and with each other, is lower for exonic than intronic variants, underscoring the difficulty of identifying missense or synonymous SDVs. Deep learning-based predictors trained on gene model annotations achieve the best overall performance at distinguishing disruptive and neutral variants, and controlling for overall call rate genome-wide, SpliceAI and Pangolin have superior sensitivity. Finally, our results highlight two practical considerations when scoring variants genome-wide: finding an optimal score cutoff, and the substantial variability introduced by differences in gene model annotation, and we suggest strategies for optimal splice effect prediction in the face of these issues. CONCLUSION: SpliceAI and Pangolin show the best overall performance among predictors tested, however, improvements in splice effect prediction are still needed especially within exons.


Subject(s)
Benchmarking , Pangolins , Animals , Pangolins/genetics , RNA Splicing , Mutation , Algorithms , RNA Splice Sites , Introns
11.
Health Sci Rep ; 6(11): e1722, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38028691

ABSTRACT

Background: As a public health concern, serious adolescent injuries constitute considerable global morbidity and mortality. Despite the proliferation of literature on this problem, the evidence on the determinants of injuries among in-school adolescents in Saint Vincent and the Grenadines (SVG) is insufficient. Method: The study analyzed data from the 2018 Global School-based Student Health Survey to examine the prevalence and determinants of serious injuries in a nationwide adolescent sample in SVG. χ 2 And binomial logistic regression analyses were carried out, along with an adjusted odds ratio and a 95% confidence interval. Results: Serious injuries among this population were estimated at 50.5%. Student grades, gender, truancy, amphetamine or methamphetamine use, marijuana or alcohol use, cigarette smoking, physical assault, physical fight, cyberbullying, suicidal behavior (ideation, plan, and attempt), parental or guardian tobacco use, and multiple sexual partners were significantly associated with serious injuries. After adjusting for other variables, being a male, having experienced a physical attack, fighting physically, attempting suicide, and having multiple sexual partners predicted serious injuries among in-school adolescents in SVG. Conclusion: The use of integrative health promotion and injury prevention programmes (e.g., antiviolence campaigns) and educational measures could help minimize or eradicate this menace in SVG.

12.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873175

ABSTRACT

Recent genome-wide association studies have established that most complex disease-associated loci are found in noncoding regions where defining their function is nontrivial. In this study, we leverage a modular massively parallel reporter assay (MPRA) to uncover sequence features linked to context-specific regulatory activity. We screened enhancer activity across a panel of 198-bp fragments spanning over 10k type 2 diabetes- and metabolic trait-associated variants in the 832/13 rat insulinoma cell line, a relevant model of pancreatic beta cells. We explored these fragments' context sensitivity by comparing their activities when placed up-or downstream of a reporter gene, and in combination with either a synthetic housekeeping promoter (SCP1) or a more biologically relevant promoter corresponding to the human insulin gene ( INS ). We identified clear effects of MPRA construct design on measured fragment enhancer activity. Specifically, a subset of fragments (n = 702/11,656) displayed positional bias, evenly distributed across up- and downstream preference. A separate set of fragments exhibited promoter bias (n = 698/11,656), mostly towards the cell-specific INS promoter (73.4%). To identify sequence features associated with promoter preference, we used Lasso regression with 562 genomic annotations and discovered that fragments with INS promoter-biased activity are enriched for HNF1 motifs. HNF1 family transcription factors are key regulators of glucose metabolism disrupted in maturity onset diabetes of the young (MODY), suggesting genetic convergence between rare coding variants that cause MODY and common T2D-associated regulatory variants. We designed a follow-up MPRA containing HNF1 motif-enriched fragments and observed several instances where deletion or mutation of HNF1 motifs disrupted the INS promoter-biased enhancer activity, specifically in the beta cell model but not in a skeletal muscle cell line, another diabetes-relevant cell type. Together, our study suggests that cell-specific regulatory activity is partially influenced by enhancer-promoter compatibility and indicates that careful attention should be paid when designing MPRA libraries to capture context-specific regulatory processes at disease-associated genetic signals.

13.
Kidney Int Rep ; 8(10): 2117-2125, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37850022

ABSTRACT

Introduction: Frasier syndrome (FS) is a rare Mendelian form of nephrotic syndrome (NS) caused by variants which disrupt the proper splicing of WT1. This key transcription factor gene is alternatively spliced at exon 9 to produce 2 isoforms ("KTS+" and "KTS-"), which are normally expressed in the kidney at a ∼2:1 (KTS+:KTS-) ratio. FS results from variants that reduce this ratio by disrupting the splice donor of the KTS+ isoform. FS is extremely rare, and it is unclear whether any variants beyond the 8 already known could cause FS. Methods: To prospectively identify other splicing-disruptive variants, we leveraged a massively parallel splicing assay. We tested every possible single nucleotide variant (n = 519) in and around WT1 exon 9 for effects upon exon inclusion and KTS+/- ratio. Results: Splice disruptive variants (SDVs) made up 11% of the tested point variants overall and were tightly concentrated near the canonical acceptor and the KTS+/- alternate donors. Our map successfully identified all 8 known FS or focal segmental glomerulosclerosis (FSGS) variants and 16 additional novel variants which were comparably disruptive to these known pathogenic variants. We also identified 19 variants that, conversely, increased the KTS+/KTS- ratio, of which 2 are observed in unrelated individuals with 46,XX ovotesticular disorder of sex development (46,XX OTDSD). Conclusion: This splicing effect map can serve as functional evidence to guide the clinical interpretation of newly observed variants in and around WT1 exon 9.

14.
Afr J Reprod Health ; 27(6s): 44-50, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37694701

ABSTRACT

Catheter-associated urinary tract infection (CA-UTI) is one of the common nosocomial infection. Minimizing the length of stay of indwelling urinary catheter has been reported as a key strategy in reducing the rate of the infection. This study compared the incidence of significant bacteriuria in patients who had removal of their urinary catheter in 12 hours compared to those removed after 24 hours following uncomplicated caesarean section. A total of 140 women were randomized into two groups of either 12-hour catheter removal (group A) or 24-hour catheter removal (group B) post-caesarean section. The socio-demographic characteristics, pre-operative and post-operative urine microscopy, culture and sensitivity, time of first ambulation, length of hospital stay and the cost of treatment for all the participants were analyzed using SPSS version 21. P value was set at 0.05. results showed the overall incidence of catheter associated significant bacteriuria was 26.3% in this study while participants in group A (20.9%) had lower incidence of microscopic bacteriuria compared to those in group B (31.8%) though not statistically significant [OR= 1.8: 95%CI (0.8-3.9); p=0.1]. The mean time of first ambulation was statistically lower in group A compared to group B (16.2 ± 7.7 hours versus 24.8 ± 4.3 hours, p<0.001 respectively). The socio-demographic characteristics, incidence of urinary retention, mean length of hospital stay and cost of treatment did not differ significantly between the groups, p >0.05. The study demonstrated that catheter removal at 12 hours post uncomplicated caesarean section can enhance early ambulation and reduce the incidence of post-operative microscopic bacteria. ClinicalTrials.gov identifier PACTR201912777385309.


Subject(s)
Bacteriuria , Cesarean Section , Pregnancy , Humans , Female , Cesarean Section/adverse effects , Nigeria/epidemiology , Bacteriuria/epidemiology , Bacteriuria/etiology , Microscopy , Urinary Catheters/adverse effects , Urinalysis
15.
bioRxiv ; 2023 May 07.
Article in English | MEDLINE | ID: mdl-37205456

ABSTRACT

Background: Variants that disrupt mRNA splicing account for a sizable fraction of the pathogenic burden in many genetic disorders, but identifying splice-disruptive variants (SDVs) beyond the essential splice site dinucleotides remains difficult. Computational predictors are often discordant, compounding the challenge of variant interpretation. Because they are primarily validated using clinical variant sets heavily biased to known canonical splice site mutations, it remains unclear how well their performance generalizes. Results: We benchmarked eight widely used splicing effect prediction algorithms, leveraging massively parallel splicing assays (MPSAs) as a source of experimentally determined ground-truth. MPSAs simultaneously assay many variants to nominate candidate SDVs. We compared experimentally measured splicing outcomes with bioinformatic predictions for 3,616 variants in five genes. Algorithms' concordance with MPSA measurements, and with each other, was lower for exonic than intronic variants, underscoring the difficulty of identifying missense or synonymous SDVs. Deep learning-based predictors trained on gene model annotations achieved the best overall performance at distinguishing disruptive and neutral variants. Controlling for overall call rate genome-wide, SpliceAI and Pangolin also showed superior overall sensitivity for identifying SDVs. Finally, our results highlight two practical considerations when scoring variants genome-wide: finding an optimal score cutoff, and the substantial variability introduced by differences in gene model annotation, and we suggest strategies for optimal splice effect prediction in the face of these issues. Conclusion: SpliceAI and Pangolin showed the best overall performance among predictors tested, however, improvements in splice effect prediction are still needed especially within exons.

17.
bioRxiv ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37066395

ABSTRACT

Robustness is the invariant development of phenotype despite environmental changes and genetic perturbations. In the Arabidopsis flower bud, four sepals initiate at robust positions and times and grow to equal size to enclose and protect the inner floral organs. We previously characterized the mutant development related myb-like1 (drmy1), where 3-5 sepals initiate at irregular positions and variable times and grow to different sizes, compromising their protective function. The molecular mechanism underlying this loss of robustness was unclear. Here, we show that drmy1 has reduced TARGET OF RAPAMYCIN (TOR) activity, ribosomal content, and translation. Translation reduction decreases the protein level of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7), a rapidly synthesized and degraded cytokinin signaling inhibitor. The resultant upregulation of cytokinin signaling disrupts the robust positioning of auxin signaling, causing variable sepal initiation. Our work shows that the homeostasis of translation, a ubiquitous cellular process, is crucial for the robust spatiotemporal patterning of organogenesis.

19.
Antibiotics (Basel) ; 12(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36978493

ABSTRACT

Pseudomonas aeruginosa is a significant pathogen identified with healthcare-associated infections. The present study evaluates the role of biofilm and efflux pump activities in influencing high-level resistance in virulent P. aeruginosa strains in clinical infection. Phenotypic resistance in biotyped Pseudomonas aeruginosa (n = 147) from diagnosed disease conditions was classified based on multiple antibiotic resistance (MAR) indices and analysed with logistic regression for risk factors. Efflux pump activity, biofilm formation, and virulence factors were analysed for optimal association in Pseudomonas infection using receiver operation characteristics (ROC). Age-specificity (OR [CI] = 0.986 [0.946-1.027]), gender (OR [CI] = 1.44 [0.211-9.827]) and infection sources (OR [CI] = 0.860 [0.438-1.688]) were risk variables for multidrug resistance (MDR)-P. aeruginosa infection (p < 0.05). Biofilm formers caused 48.2% and 18.5% otorrhea and wound infections (95% CI = 0.820-1.032; p = 0.001) respectively and more than 30% multidrug resistance (MDR) strains demonstrated high-level efflux pump activity (95% CI = 0.762-1.016; p = 0.001), protease (95% CI = 0.112-0.480; p = 0.003), lipase (95% CI = 0.143-0.523; p = 0.001), and hemolysin (95% CI = 1.109-1.780; p = 0.001). Resistance relatedness of more than 80% and 60% to cell wall biosynthesis inhibitors (ceftazidime, ceffproxil, augumentin, ampicillin) and, DNA translational and transcriptional inhibitors (gentamicin, ciprofloxacin, ofloxacin, nitrofurantoin) were observed (p < 0.05). Strong efflux correlation (r = 0.85, p = 0.034) with MDR strains, with high predictive performances in efflux pump activity (ROC-AUC 0.78), biofilm formation (ROC-AUC 0.520), and virulence hierarchical-clustering. Combine activities of the expressed efflux pump and biofilm formation in MDR-P. aeruginosa pose risk to clinical management and infection control.

20.
Chem Sci ; 14(12): 3247-3256, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36970105

ABSTRACT

Carbonyl bond hydroboration is a valuable synthetic route to functionalized alcohols but relies on sometimes unselective and sluggish reagents. While rapid and selective aldehyde and ketone hydroboration mediated by trisamidolanthanide catalysts is known, the origin of the selectivity is not well-understood and is the subject of this contribution. Here the aldehyde and ketone HBpin hydroboration reaction mechanisms catalyzed by La[N(SiMe3)2]3 are investigated both experimentally and theoretically. The results support initial carbonyl oxygen coordination to the acidic La center, followed by intramolecular ligand-assisted hydroboration of the carbonyl moiety by bound HBpin. Interestingly, ketone hydroboration has a higher energetic barrier than that of aldehydes due to the increased steric encumbrance and decreased electrophilicity. Utilizing NMR spectroscopy and X-ray diffraction, a bidentate acylamino lanthanide complex associated with the aldehyde hydroboration is isolated and characterized, consistent with the relative reaction rates. Furthermore, an aminomonoboronate-lanthanide complex produced when the La catalyst is exposed to excess HBpin is isolated and characterized by X-ray diffraction, illuminating unusual aminomonoboronate coordination. These results shed new light on the origin of the catalytic activity patterns, reveal a unique ligand-assisted hydroboration pathway, and uncover previously unknown catalyst deactivation pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...