Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Can J Physiol Pharmacol ; 98(7): 441-448, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32597688

ABSTRACT

Pyrazoles represent a significant class of heterocyclic compounds that exhibit pharmacological properties. The present study aimed to investigate the antioxidant potential of pyrazol derivative compounds in brain of mice in vitro and the effect of pyrazol derivative compounds in the oxidative damage and toxicity parameters in mouse brain and plasma of mice. The compounds tested were 3,5-dimethyl-1-phenyl-4-(phenylselanyl)-1H-pyrazol (1a), 3,5-dimethyl-4-(phenylselanyl)-1H-pyrazole (2a), 4-((4-methoxyphenyl)selanyl)-3,5-dimethyl-1-phenyl-1H-pyrazole (3a), 4-((4-chlorophenyl)selanyl)-3,5-dimethyl-1-phenyl-1H-pyrazole (4a), 3,5-dimethyl-1-phenyl-4-(phenylthio)-1H-pyrazole (1b), 3,5-dimethyl-4-(phenylthio)-1H-pyrazole (2b), 4-((4-methoxyphenyl)thio)-3,5-dimethyl-1-phenyl-1H-pyrazole (3b), 4-((4-chlorophenyl)thio)-3,5-dimethyl-1-phenyl-1H-pyrazole (4b), and 3,5-dimethyl-1-phenyl-1H-pyrazole (1c). In vitro, 4-(arylcalcogenyl)-1H-pyrazoles, at low molecular range, reduced lipid peroxidation and reactive species in mouse brain homogenates. The compounds also presented ferric-reducing ability as well nitric oxide-scavenging activity. Especially compounds 1a, 1b, and 1c presented efficiency to 1,1-diphenyl-2-picryl-hydrazyl-scavenging activity. Compounds 1b and 1c presented 2,20 -azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)-scavenging activity. In vivo assays demonstrated that compounds 1a, 1b, and 1c (300 mg/kg, intragastric, a single administration) did not cause alteration in the of δ-aminolevulinic acid dehydratase activity, an enzyme that exhibits high sensibility to prooxidants situations, in the brain, liver, and kidney of mice. Compound 1c reduced per se the lipid peroxidation in liver and brain of mice. Toxicological assays demonstrate that compounds 1a, 1b, and 1c did not present toxicity in the aspartate aminotransferase, alanine aminotransferase, urea, and creatinine levels in the plasma. In conclusion, the results demonstrated the antioxidant action of pyrazol derivative compounds in in vitro assays. Furthermore, the results showed low toxicity of compounds in in vivo assays.


Subject(s)
Cerebral Cortex/drug effects , Free Radical Scavengers/pharmacology , Lipid Peroxidation/drug effects , Pyrazoles/pharmacology , Administration, Oral , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Drug Evaluation, Preclinical , Free Radical Scavengers/chemistry , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Male , Mice , Models, Animal , Pyrazoles/chemistry , Reactive Oxygen Species/metabolism , Selenium/chemistry , Sulfur/chemistry , Toxicity Tests, Acute
2.
PeerJ ; 6: e4706, 2018.
Article in English | MEDLINE | ID: mdl-29761042

ABSTRACT

A green methodology to synthesize 2-organoselanyl-naphthalenes based on the reaction of alkynols with diaryl diselenides is described. The electrophilic species of selenium were generated in situ, by the oxidative cleavage of the Se-Se bond of diaryl diselenides by Oxone® using water as the solvent. The reactions proceeded efficiently under ultrasonic irradiation as an alternative energy source, using a range of alkynols and diorganyl diselenides as starting materials. Through this methodology, the corresponding 2-organoselanyl-naphthalenes were obtained in moderate to good yields (56-94%) and in short reaction times (0.25-2.3 h).

3.
Food Chem Toxicol ; 50(8): 2668-74, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22583648

ABSTRACT

Essential oil (EO) of the leaves of Eugenia uniflora L. (Brazilian cherry tree) was evaluated for its antioxidant, antibacterial and antifungal properties. The acute toxicity of the EO administered by oral route was also evaluated in mice. The EO exhibited antioxidant activity in the DPPH, ABTS and FRAP assays and reduced lipid peroxidation in the kidney of mice. The EO also showed antimicrobial activity against two important pathogenic bacteria, Staphylococcus aureus and Listeria monocytogenes, and against two fungi of the Candida species, C. lipolytica and C. guilliermondii. Acute administration of the EO by the oral route did not cause lethality or toxicological effects in mice. These findings suggest that the EO of the leaves of E. uniflora may have the potential for use in the pharmaceutical industry.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Syzygium/chemistry , Animals , Candida/drug effects , Lethal Dose 50 , Listeria monocytogenes/drug effects , Mice , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects
4.
Chem Rev ; 109(3): 1277-301, 2009 Mar 11.
Article in English | MEDLINE | ID: mdl-19222199
SELECTION OF CITATIONS
SEARCH DETAIL
...