Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
3.
Sci Rep ; 6: 37175, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27845442

ABSTRACT

Organophosphate poisoning can occur from exposure to agricultural pesticides or chemical weapons. This exposure inhibits acetylcholinesterase resulting in increased acetylcholine levels within the synaptic cleft causing loss of muscle control, seizures, and death. Mitigating the effects of organophosphates in our bodies is critical and yet an unsolved challenge. Here, we present a computational strategy that integrates structure mining and modeling approaches, using which we identify novel candidates capable of interacting with a serine hydrolase probe (with equilibrium binding constants ranging from 4 to 120 µM). One candidate Smu. 1393c catalyzes the hydrolysis of the organophosphate omethoate (kcat/Km of (2.0 ± 1.3) × 10-1 M-1s-1) and paraoxon (kcat/Km of (4.6 ± 0.8) × 103 M-1s-1), V- and G-agent analogs respectively. In addition, Smu. 1393c protects acetylcholinesterase activity from being inhibited by two organophosphate simulants. We demonstrate that the utilized approach is an efficient and highly-extendable framework for the development of prophylactic therapeutics against organophosphate poisoning and other important targets. Our findings further suggest currently unknown molecular evolutionary rules governing natural diversity of the protein universe, which make it capable of recognizing previously unseen ligands.


Subject(s)
Data Mining , Databases, Protein , Organophosphates/chemistry , Serine Endopeptidases/chemistry , Hydrolysis , Serine Endopeptidases/genetics
4.
Sci Rep ; 6: 18701, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26726832

ABSTRACT

Fortilin, a pro-survival molecule, inhibits p53-induced apoptosis by binding to the sequence-specific DNA-binding domain of the tumor suppressor protein and preventing it from transcriptionally activating Bax. Intriguingly, fortilin protects cells against ROS-induced cell death, independent of p53. The signaling pathway through which fortilin protects cells against ROS-induced cell death, however, is unknown. Here we report that fortilin physically interacts with the antioxidant enzyme peroxiredoxin-1 (PRX1), protects it from proteasome-mediated degradation, and keeps it enzymatically active by blocking its deactivating phosphorylation by Mst1, a serine/threonine kinase. At the whole animal level, the liver-specific overexpression of fortilin reduced PRX1 phosphorylation in the liver, enhanced PRX1 activity, and protected the transgenic animals against alcohol-induced, ROS-mediated, liver damage. These data suggest the presence of a novel oxidative-stress-handling pathway where the anti-p53 molecule fortilin augments the peroxidase PRX1 by protecting it against degradation and inactivation of the enzyme. Fortilin-PRX1 interaction in the liver could be clinically exploited further to prevent acute alcohol-induced liver damage in humans.


Subject(s)
Alcohols/adverse effects , Biomarkers, Tumor/metabolism , Liver Diseases/etiology , Liver Diseases/metabolism , Peroxiredoxins/metabolism , Animals , Apoptosis , Biomarkers, Tumor/chemistry , Disease Models, Animal , Enzyme Activation , Gene Expression , Hepatocyte Growth Factor/metabolism , Homeodomain Proteins/metabolism , Liver Diseases/pathology , Mice , Oxidation-Reduction , Peroxiredoxins/chemistry , Peroxiredoxins/genetics , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Conformation , Protein Multimerization , Proteolysis , Proto-Oncogene Proteins/metabolism , Reactive Oxygen Species/metabolism , Tumor Protein, Translationally-Controlled 1 , Tumor Suppressor Protein p53/metabolism
5.
Cytokine ; 72(1): 71-85, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25622278

ABSTRACT

Oncostatin M (OSM) is an interleukin-6-like inflammatory cytokine reported to play a role in a number of pathological processes including cancer. Full-length OSM is expressed as a 26 kDa protein that can be proteolytically processed into 24 kDa and 22 kDa forms via removal of C-terminal peptides. In this study, we examined both the ability of OSM to bind to the extracellular matrix (ECM) and the activity of immobilized OSM on human breast carcinoma cells. OSM was observed to bind to ECM proteins collagen types I and XI, laminin, and fibronectin in a pH-dependent fashion, suggesting a role for electrostatic bonds that involves charged amino acids of both the ECM and OSM. The C-terminal extensions of 24 kDa and 26 kDa OSM, which contains six and thirteen basic amino acids, respectively, enhanced electrostatic binding to ECM at pH 6.5-7.5 when compared to 22 kDa OSM. The highest levels of OSM binding to ECM, though, were observed at acidic pH 5.5, where all forms of OSM bound to ECM proteins to a similar extent. This indicates additional electrostatic binding properties independent of the OSM C-terminal extensions. The reducing agent dithiothreitol also inhibited the binding of OSM to ECM suggesting a role for disulfide bonds in OSM immobilization. OSM immobilized to ECM was protected from cleavage by tumor-associated proteases and maintained activity following incubation at acidic pH for extended periods of time. Importantly, immobilized OSM remained biologically active and was able to induce and sustain the phosphorylation of STAT3 in T47D and ZR-75-1 human breast cancer cells over prolonged periods, as well as increase levels of STAT1 and STAT3 protein expression. Immobilized OSM also induced epithelial-mesenchymal transition-associated morphological changes in T47D cells. Taken together, these data indicate that OSM binds to ECM in a bioactive state that may have important implications for the development of chronic inflammation and tumor metastasis.


Subject(s)
Extracellular Matrix/metabolism , Inflammation/metabolism , Neoplasm Metastasis/physiopathology , Oncostatin M/metabolism , Breast Neoplasms , Coculture Techniques , Collagen Type I/metabolism , Collagen Type XI/metabolism , Dithiothreitol/pharmacology , Epithelial-Mesenchymal Transition , Female , Fibronectins/metabolism , Humans , Hydrogen-Ion Concentration , Laminin/metabolism , Phosphorylation , Protein Binding , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction
6.
PLoS Comput Biol ; 8(5): e1002499, 2012 May.
Article in English | MEDLINE | ID: mdl-22693435

ABSTRACT

We survey low cost high-throughput virtual screening (HTVS) computer programs for instructors who wish to demonstrate molecular docking in their courses. Since HTVS programs are a useful adjunct to the time consuming and expensive wet bench experiments necessary to discover new drug therapies, the topic of molecular docking is core to the instruction of biochemistry and molecular biology. The availability of HTVS programs coupled with decreasing costs and advances in computer hardware have made computational approaches to drug discovery possible at institutional and non-profit budgets. This paper focuses on HTVS programs with graphical user interfaces (GUIs) that use either DOCK or AutoDock for the prediction of DockoMatic, PyRx, DockingServer, and MOLA since their utility has been proven by the research community, they are free or affordable, and the programs operate on a range of computer platforms.


Subject(s)
Computational Biology/education , Computational Biology/methods , Models, Chemical , Software , High-Throughput Screening Assays , Humans , Models, Biological , Models, Molecular , User-Computer Interface
7.
J Comput Chem ; 32(13): 2936-41, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21717479

ABSTRACT

The purpose of this manuscript is threefold: (1) to describe an update to DockoMatic that allows the user to generate cyclic peptide analog structure files based on protein database (pdb) files, (2) to test the accuracy of the peptide analog structure generation utility, and (3) to evaluate the high throughput capacity of DockoMatic. The DockoMatic graphical user interface interfaces with the software program Treepack to create user defined peptide analogs. To validate this approach, DockoMatic produced cyclic peptide analogs were tested for three-dimensional structure consistency and binding affinity against four experimentally determined peptide structure files available in the Research Collaboratory for Structural Bioinformatics database. The peptides used to evaluate this new functionality were alpha-conotoxins ImI, PnIA, and their published analogs. Peptide analogs were generated by DockoMatic and tested for their ability to bind to X-ray crystal structure models of the acetylcholine binding protein originating from Aplysia californica. The results, consisting of more than 300 simulations, demonstrate that DockoMatic predicts the binding energy of peptide structures to within 3.5 kcal mol(-1), and the orientation of bound ligand compares to within 1.8 Å root mean square deviation for ligand structures as compared to experimental data. Evaluation of high throughput virtual screening capacity demonstrated that Dockomatic can collect, evaluate, and summarize the output of 10,000 AutoDock jobs in less than 2 hours of computational time, while 100,000 jobs requires approximately 15 hours and 1,000,000 jobs is estimated to take up to a week.


Subject(s)
Aplysia/metabolism , Conotoxins/metabolism , Peptides/metabolism , Receptors, Cholinergic/metabolism , Software , Animals , Aplysia/chemistry , Computer Simulation/economics , Conotoxins/chemistry , Databases, Protein , Ligands , Models, Molecular , Peptides/chemistry , Protein Binding , Receptors, Cholinergic/chemistry , Software/economics , Thermodynamics
8.
BMC Res Notes ; 3: 289, 2010 Nov 08.
Article in English | MEDLINE | ID: mdl-21059259

ABSTRACT

BACKGROUND: The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI) application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions. RESULTS: DockoMatic allows the user to invoke and manage AutoDock jobs on a single computer or cluster, including jobs for evaluating secondary ligand interactions. It also automates the process of collecting, summarizing, and viewing results. In addition, DockoMatic automates creation of peptide ligand .pdb files from strings of single-letter amino acid abbreviations. CONCLUSIONS: DockoMatic significantly reduces the complexity of managing multiple AutoDock jobs by facilitating ligand and AutoDock job creation and management.

9.
Cell Mol Life Sci ; 67(1): 17-27, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19705062

ABSTRACT

The focus of this review is the M-superfamily of Conus venom peptides. Disulfide rich peptides belonging to the M-superfamily have three loop regions and the cysteine arrangement: CC-C-C-CC, where the dashes represent loops one, two, and three, respectively. Characterization of M-superfamily peptides has demonstrated that diversity in cystine connectivity occurs between different branches of peptides even though the cysteine pattern remains consistent. This superfamily is subdivided into five branches, M-1 through M-5, based on the number of residues in the third loop region, between the fourth and fifth cysteine residues. M-superfamily peptides appear to be ubiquitous in Conus venom. They are largely unexplained in indigenous biological function, and they represent an active area of research within the scientific community.


Subject(s)
Conotoxins/chemistry , Amino Acid Sequence , Animals , Conotoxins/classification , Conus Snail/metabolism , Disulfides/chemistry , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...