Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Dev ; 28(7): 765-82, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24636986

ABSTRACT

The mammary gland is a very dynamic organ that undergoes continuous remodeling. The critical regulators of this process are not fully understood. Here we identify the microRNA cluster miR-424(322)/503 as an important regulator of epithelial involution after pregnancy. Through the generation of a knockout mouse model, we found that regression of the secretory acini of the mammary gland was compromised in the absence of miR-424(322)/503. Mechanistically, we show that miR-424(322)/503 orchestrates cell life and death decisions by targeting BCL-2 and IGF1R (insulin growth factor-1 receptor). Furthermore, we demonstrate that the expression of this microRNA cluster is regulated by TGF-ß, a well-characterized regulator of mammary involution. Overall, our data suggest a model in which activation of the TGF-ß pathway after weaning induces the transcription of miR-424(322)/503, which in turn down-regulates the expression of key genes. Here, we unveil a previously unknown, multilayered regulation of epithelial tissue remodeling coordinated by the microRNA cluster miR-424(322)/503.


Subject(s)
Epithelium/metabolism , Gene Expression Regulation, Developmental , Mammary Glands, Animal/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Cell Death/genetics , Cell Line , Female , Gene Knockout Techniques , Humans , Mammary Glands, Animal/cytology , Mice, Knockout , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...