Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 665: 649-659, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30776637

ABSTRACT

The success of cadmium phytoextraction operations with Noccaea caerulescens varies by a factor of 70 between sites of trials. However, soil factors driving the efficiency of cadmium (Cd) and zinc (Zn) phytoextraction are still poorly understood, as are the effects of nitrogen fertilizers. We studied biomass production and Cd and Zn uptake by two contrasting populations of N. caerulescens, Ganges (metallicolous) and Wilwerwiltz (non-metallicolous) grown in pots on a range of 24 field contaminated soils for 20 weeks. The addition of KNO3 and NH4NO3 fertilizers was also tested. Using model averaging of multiple regression models, we show that the major drivers of N. caerulescens growth are physical soil factors such as organic matter and soil bulk density while trace metal accumulation mainly relies on soil Cd and Zn exchangeable concentrations. We confirm the negative effect of soil copper (Cu) on growth, even at exchangeable concentrations below 30 mg kg-1, and therefore on uptake efficiency, while increasing soil lead (Pb) content was related to increased biomass probably due to a protective effect against soil pathogens. Finally, there is a small positive effect of nitrogen fertilization on biomass production only in soils with low initial nitrogen content (under 25 µg g-1 NO3-), while above this value, the positive impact of initial nitrogen content is offset by lower shoot Cd and Zn concentrations. Our data bring substantial information regarding the physico-chemical properties to ensure N. caerulescens growth: a soil bulk density under 1.05 kg/dm3, organic matter above 7% and pH under 7.5. We show that phytoextraction efficiency is maximal for moderate soil contamination in Cd (2-10 mg kg-1) and Zn (300-1000 mg kg-1).


Subject(s)
Brassicaceae/physiology , Cadmium/metabolism , Soil Pollutants/metabolism , Zinc/metabolism , Biodegradation, Environmental , Brassicaceae/genetics , Brassicaceae/growth & development , Fertilizers/analysis , Nitrogen/analysis , Soil/chemistry , Thlaspi/genetics , Thlaspi/growth & development , Thlaspi/physiology
2.
Environ Sci Pollut Res Int ; 24(9): 8176-8188, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28144868

ABSTRACT

Urban soil contamination with trace metals is a major obstacle to the development of urban agriculture as crops grown in urban gardens are prone to accumulate trace metals up to toxic levels for human consumption. Phytoextraction is considered as a potentially cost-effective alternative to conventional methods such as excavation. Field trials of phytoextraction with Noccaea caerulescens were conducted on urban soils contaminated with Cd, Cu, Pb, and Zn (respectively around 2, 150-200, 400-500, and 400-700 µg g-1 of dry soil). Metallicolous (Ganges population) and non-metallicolous (NMET) populations were compared for biomass production and trace metal uptake. Moreover, we tested the effect of compost and fertilizer addition. Maximal biomass of 5 t ha-1 was obtained with NMET populations on some plots. Compared to Ganges- the high Cd-accumulating ecotype from South of France often used in phytoextraction trials- NMET populations have an advantage for biomass production and for Zn accumulation, with an average Zn uptake of 2.5 times higher. The addition of compost seems detrimental due to metal immobilization in the soil with little or no effect on plant growth. In addition to differences between populations, variations of growth and metal accumulation were mostly explained by soil Cd and Zn concentrations and texture. Our field trials confirm the potential of using N. caerulescens for both Cd and Zn remediation of moderately contaminated soils-with uptake values of up to 200 g Cd ha-1 and 47 kg Zn ha-1-and show the interest of selecting the adequate population according to the targeted metal.


Subject(s)
Brassicaceae/metabolism , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Agriculture , Biodegradation, Environmental , Biomass , Brassicaceae/growth & development , Ecotype , Fertilizers , France , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...