Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Haematologica ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934068

ABSTRACT

Macrophages are one of the key mediators of the therapeutic effects exerted by monoclonal antibodies, such as the anti-CD19 antibody tafasitamab, approved in combination with lenalidomide for the treatment of relapsed or refractory (r/r) diffuse large B cell lymphoma (DLBCL). However, antibody-dependent cellular phagocytosis (ADCP) in the tumor microenvironment can be counteracted by increased expression of the inhibitory receptor SIRPα on macrophages and its ligand, the immune checkpoint molecule CD47 on tumor cells. The aim of this study was to investigate the impact of the CD47-SIRPα axis on tafasitamabmediated phagocytosis and explore the potential of anti-CD47 blockade to enhance its antitumor activity. Elevated expression of both SIRPα and CD47 was observed in DLBCL patient-derived lymph node biopsies compared to healthy controls. CRISPR-mediated CD47 overexpression impacted tafasitamab-mediated ADCP in vitro and increased expression of SIRPα on macrophages correlated with decreased ADCP activity of tafasitamab against DLBCL cell lines. Combination of tafasitamab and an anti-CD47 blocking antibody enhanced ADCP activity of in vitro generated macrophages. Importantly, tafasitamab-mediated phagocytosis was elevated in combination with CD47 blockade using primary DLBCL cells and patient-derived lymphoma-associated macrophages (LAMs) in an autologous setting. Furthermore, lymphoma cells with low CD19 expression were efficiently eliminated by the combination treatment. Finally, combined treatment of tafasitamab and an anti-CD47 antibody resulted in enhanced tumor volume reduction and survival benefit in lymphoma xenograft mouse models. These findings provide evidence that CD47 blockade can enhance the phagocytic potential of tumor targeting immunotherapies such as tafasitamab and suggest there is value in exploring the combination in the clinic.

2.
Transplant Cell Ther ; 30(6): 628.e1-628.e9, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460727

ABSTRACT

High-dose chemotherapy followed by autologous stem cell transplantation (auto-SCT) is a well-established treatment option for multiple myeloma and malignant lymphoma patients. It is able to induce long-term progression-free survival (PFS) in both patient groups and even provide a cure in patients with aggressive lymphoma. However, relapse is common and has been associated with the pace and quality of immunologic reconstitution after transplantation, as well as with immune cell exhaustion and immunometabolic defects. We aimed to analyze the dynamics of the prototypical exhaustion marker PD-1 on immune cells during reconstitution on high-dose chemotherapy followed by auto-SCT and its impact on PFS. We performed a comprehensive analysis of exhaustion and metabolic markers on immune cells from myeloma and lymphoma patients undergoing auto-SCT using flow cytometry and NanoString technologies. The expression levels of PD-1 were increased during early reconstitution after transplantation on T cells and natural killer (NK) cells, as well as on monocytes. However, while PD-1 expression in NK cells and monocytes normalized over time, PD-1 expression on T cells demonstrated a variable course. Of note, lymphoma patients with continuously increasing PD-1 expression on T cells after auto-SCT had an inferior median PFS of only 146 days, whereas the median PFS was not reached in the lymphoma patients without such a PD-1 expression pattern. T cells from patients with increased PD-1 expression after auto-SCT exhibited an immunometabolic (over)activation and exhausted phenotype compared to T cells from patients with a low PD-1 expression after transplantation, including higher levels of the glycolytic pacemaker enzyme hexokinase 2 and the inhibitory receptor CTLA-4. In addition, proliferating Ki-67+ T cells were more abundant in patients with high PD-1 expression on T cells compared to those with low expression after auto-SCT (11.9% versus 4.2%). PD-1 expression on T cells might serve as an adverse biomarker for lymphoma patients undergoing auto-SCT; however, further validation by larger prospective studies is required.


Subject(s)
Multiple Myeloma , Programmed Cell Death 1 Receptor , T-Lymphocytes , Transplantation, Autologous , Humans , Programmed Cell Death 1 Receptor/metabolism , Male , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Middle Aged , Female , Multiple Myeloma/therapy , Aged , Lymphoma/therapy , Adult , Hematopoietic Stem Cell Transplantation , Treatment Outcome , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Stem Cell Transplantation
3.
Eur J Haematol ; 112(4): 641-649, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38164819

ABSTRACT

OBJECTIVES: Treatment intensification (including consolidative high-dose chemotherapy with autologous stem cell transplantation [HDT-ASCT]) significantly improved outcome in primary central nervous system lymphoma (PCNSL) patients. METHODS: We conducted a multicenter, retrospective analysis of newly diagnosed PCNSL patients, treated with intensified treatment regimens. The following scores were evaluated in terms of overall survival (OS) and progression-free survival (PFS): Memorial Sloan-Kettering Cancer Center (MSKCC), International Extranodal Lymphoma Study Group (IELSG), and three-factor (3F) prognostic score. Further, all scores were comparatively investigated for model quality and concordance. RESULTS: Altogether, 174 PCNSL patients were included. One hundred and five patients (60.3%) underwent HDT-ASCT. Two-year OS and 2-year PFS for the entire population were 73.3% and 48.5%, respectively. The MSKCC (p = .003) and 3F score (p < .001), but not the IELSG score (p = .06), had the discriminatory power to identify different risk groups for OS. In regard to concordance, the 3F score (C-index [0.71]) outperformed both the MSKCC (C-index [0.64]) and IELSG (C-index [0.53]) score. Moreover, the superiority of the 3F score was shown for PFS, successfully stratifying patients in three risk groups, which also resulted in the highest C-index (0.66). CONCLUSION: The comparative analysis of established PCNSL risk scores affirm the clinical utility of the 3F score stratifying the widest prognostic spectrum among PCNSL patients treated with intensified treatment approaches.


Subject(s)
Central Nervous System Neoplasms , Hematopoietic Stem Cell Transplantation , Lymphoma , Humans , Hematopoietic Stem Cell Transplantation/methods , Prognosis , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Central Nervous System Neoplasms/therapy , Central Nervous System Neoplasms/drug therapy , Retrospective Studies , Transplantation, Autologous , Lymphoma/therapy , Lymphoma/drug therapy
5.
Sci Rep ; 12(1): 11406, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794135

ABSTRACT

Previous studies indicated a role of the reconstituting immune system for disease outcome upon high-dose chemotherapy (HDCT) and autologous stem cell transplantation (auto-SCT) in multiple myeloma (MM) and lymphoma patients. Since immune cell metabolism and function are closely interconnected, we used flow-cytometry techniques to analyze key components and functions of the metabolic machinery in reconstituting immune cells upon HDCT/auto-SCT. We observed increased proliferative activity and an upregulation of the glycolytic and fatty acid oxidation (FAO) machinery in immune cells during engraftment. Metabolic activation was more pronounced in T-cells of advanced differentiation stages, in CD56bright NK-cells, and CD14++CD16+ intermediate monocytes. Next, we investigated a potential correlation between the immune cells' metabolic profile and early progression or relapse in lymphoma patients within the first twelve months following auto-SCT. Here, persistently increased metabolic parameters correlated with a rather poor disease course. Taken together, reconstituting immune cells display an upregulated bioenergetic machinery following auto-SCT. Interestingly, a persistently enhanced metabolic immune cell phenotype correlated with reduced PFS. However, it remains to be elucidated, if the clinical data can be confirmed within a larger set of patients and if residual malignant cells not detected by conventional means possibly caused the metabolic activation.


Subject(s)
Hematopoietic Stem Cell Transplantation , T-Lymphocytes , Humans , Killer Cells, Natural , Metabolome , Monocytes , Neoplasm Recurrence, Local , Transplantation, Autologous
6.
Blood ; 139(5): 704-716, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34699594

ABSTRACT

Neutrophils have been thought to play a critical role in terminal differentiation of NK cells. Whether this effect is direct or a consequence of global immune changes with effects on NK-cell homeostasis remains unknown. In this study, we used high-resolution flow and mass cytometry to examine NK-cell repertoires in 64 patients with neutropenia and 27 healthy age- and sex-matched donors. A subgroup of patients with chronic neutropenia showed severely disrupted NK-cell homeostasis manifesting as increased frequencies of CD56bright NK cells and a lack of mature CD56dim NK cells. These immature NK-cell repertoires were characterized by expression of the proliferation/exhaustion markers Ki-67, Tim-3, and TIGIT and displayed blunted tumor target cell responses. Systems-level immune mapping revealed that the changes in immunophenotypes were confined to NK cells, leaving T-cell differentiation intact. RNA sequencing of NK cells from these patients showed upregulation of a network of genes, including TNFSF9, CENPF, MKI67, and TOP2A, associated with apoptosis and the cell cycle, but different from the conventional CD56bright signatures. Profiling of 249 plasma proteins showed a coordinated enrichment of pathways related to apoptosis and cell turnover, which correlated with immature NK-cell repertoires. Notably, most of these patients exhibited severe-grade neutropenia, suggesting that the profoundly altered NK-cell homeostasis was connected to the severity of their underlying etiology. Hence, although our data suggest that neutrophils are dispensable for NK-cell development and differentiation, some patients displayed a specific gap in the NK repertoire, associated with poor cytotoxic function and more severe disease manifestations.


Subject(s)
Killer Cells, Natural/pathology , Neutropenia/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Hepatitis A Virus Cellular Receptor 2/analysis , Homeostasis , Humans , Infant , Ki-67 Antigen/analysis , Male , Middle Aged , Receptors, Immunologic/analysis , Severity of Illness Index , Young Adult
7.
Front Immunol ; 12: 670540, 2021.
Article in English | MEDLINE | ID: mdl-34054844

ABSTRACT

Cellular therapy has entered the daily clinical life with the approval of CAR T cell therapeutics and dendritic cell (DCs) vaccines in the US and the EU. In addition, numerous other adoptive cellular products, including natural killer (NK) cells, are currently evaluated in early phase I/ II clinical trials for the treatment of cancer patients. Despite these promising accomplishments, various challenges remain to be mastered in order to ensure sustained therapeutic success. These include the identification of strategies by which tumor cells escape the immune system or establish an immunosuppressive tumor microenvironment (TME). As part of the innate immune system, DCs and NK cells are both present within the TME of various tumor entities. While NK cells are well known for their intrinsic anti-tumor activity by their cytotoxicity capacities and the secretion of pro-inflammatory cytokines, the role of DCs within the TME is a double-edged sword as different DC subsets have been described with either tumor-promoting or -inhibiting characteristics. In this review, we will discuss recent findings on the interaction of DCs and NK cells under physiological conditions and within the TME. One focus is the crosstalk of various DC subsets with NK cells and their impact on the progression or inhibition of tumor growth. In addition, we will provide suggestions to overcome the immunosuppressive outcome of the interaction of DCs and NK cells within the TME.


Subject(s)
Dendritic Cells/immunology , Killer Cells, Natural/immunology , Tumor Escape/immunology , Tumor Microenvironment/immunology , Animals , Cell Communication/immunology , Dendritic Cells/metabolism , Humans , Killer Cells, Natural/metabolism
9.
Front Immunol ; 11: 2128, 2020.
Article in English | MEDLINE | ID: mdl-33123121

ABSTRACT

Tumor cells develop various mechanisms to escape immune surveillance. In this context, oncometabolites secreted by tumor cells due to deregulated metabolic pathways, have been in the spotlight of researchers during the last years. 5'-Deoxy-5'-methylthioadenosine (MTA) phosphorylase (MTAP) deficiency in tumors results in the accumulation of MTA within the tumor microenvironment and thereby negatively influencing immune functions of various immune cells, including T and NK cells. The influence of MTA on T cell activation has been recently described in more detail, while its impact on NK cells is still largely unknown. Therefore, we aimed to illuminate the molecular mechanism of MTA-induced NK cell dysfunction. NK cell cytotoxicity against target cells was reduced in the presence of MTA in a dose-dependent manner, while NK cell viability remained unaffected. Furthermore, we revealed that MTA blocks NK cell degranulation and cytokine production upon target cell engagement as well as upon antibody stimulation. Interestingly, the immune-suppressive effect of MTA was less pronounced in healthy donors harboring an expansion of NKG2C+ NK cells. Finally, we demonstrated that MTA interferes with various signaling pathways downstream of the CD16 receptor upon NK cell activation, including the PI3K/AKT/S6, MAPK/ERK, and NF-κB pathways. In summary, we revealed that MTA blocks NK cell functions like cytotoxicity and cytokine production by interfering with the signaling cascade of activating NK cell receptors. Specific targeting of MTA metabolism in MTAP-deficient tumors therefore could offer a promising new strategy to reverse immune dysfunction of NK cells within the tumor microenvironment.


Subject(s)
Deoxyadenosines/pharmacology , Killer Cells, Natural/drug effects , NF-kappa B/antagonists & inhibitors , Purine-Nucleoside Phosphorylase/metabolism , Signal Transduction/drug effects , Thionucleosides/pharmacology , CD57 Antigens/immunology , Cell Degranulation/drug effects , Cells, Cultured , Cytokines/biosynthesis , Cytotoxicity, Immunologic , GPI-Linked Proteins/physiology , Humans , Immunosuppression Therapy , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , K562 Cells , Killer Cells, Natural/immunology , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/immunology , Lysosomal-Associated Membrane Protein 1/biosynthesis , Lysosomal-Associated Membrane Protein 1/genetics , NF-kappa B/physiology , NK Cell Lectin-Like Receptor Subfamily C/analysis , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Receptors, IgG/physiology , Tumor Escape , Tumor Stem Cell Assay
10.
Front Immunol ; 11: 812, 2020.
Article in English | MEDLINE | ID: mdl-32477340

ABSTRACT

Natural killer (NK) cells have a central role within the innate immune system, eliminating virally infected, foreign and transformed cells through their natural cytotoxic capacity. Release of their cytotoxic granules is tightly controlled through the balance of a large repertoire of inhibitory and activating receptors, and it is the unique combination of these receptors expressed by individual cells that confers immense diversity both in phenotype and functionality. The diverse, yet unique, NK cell repertoire within an individual is surprisingly stable over time considering the constant renewal of these cells at steady state. Here we give an overview of NK cell differentiation and discuss metabolic requirements, intra-lineage plasticity and transcriptional reprogramming during IL-15-driven homeostatic proliferation. New insights into the regulation of NK cell differentiation and homeostasis could pave the way for the successful implementation of NK cell-based immunotherapy against cancer.


Subject(s)
Homeostasis/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Plasticity/immunology , Cell Proliferation , Cell- and Tissue-Based Therapy/methods , Humans , Interleukin-15/metabolism , Mice , Neoplasms/therapy , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic
11.
Cell Rep ; 29(8): 2284-2294.e4, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31747601

ABSTRACT

Natural killer (NK) cell repertoires are made up of phenotypically distinct subsets with different functional properties. The molecular programs involved in maintaining NK cell repertoire diversity under homeostatic conditions remain elusive. Here, we show that subset-specific NK cell proliferation kinetics correlate with mTOR activation, and global repertoire diversity is maintained through a high degree of intra-lineage subset plasticity during interleukin (IL)-15-driven homeostatic proliferation in vitro. Slowly cycling sorted KIR+CD56dim NK cells with an induced CD57 phenotype display increased functional potential associated with increased transcription of genes involved in adhesion and immune synapse formation. Rapidly cycling cells upregulate NKG2A, display a general loss of functionality, and a transcriptional signature associated with increased apoptosis/cellular stress, actin-remodeling, and nuclear factor κB (NF-κB) activation. These results shed light on the role of intra-lineage plasticity during NK cell homeostasis and suggest that the functional fate of the cell is tightly linked to the acquired phenotype and transcriptional reprogramming.


Subject(s)
Killer Cells, Natural/metabolism , Apoptosis/genetics , Apoptosis/physiology , CD56 Antigen/metabolism , CD57 Antigens/metabolism , Humans , Interleukin-15/metabolism , Kinetics , NF-kappa B/metabolism , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Phenotype , Sequence Analysis, RNA , Synapses/metabolism
12.
Front Immunol ; 10: 2085, 2019.
Article in English | MEDLINE | ID: mdl-31572357

ABSTRACT

Monotherapy with the anti-CD20 monoclonal antibody rituximab can induce complete responses (CR) in patients with follicular lymphoma (FL). Resting FcRγIII+ (CD16+) natural killer (NK) cells respond strongly to rituximab-coated target cells in vitro. Yet, the contribution of NK cells in the therapeutic effect in vivo remains unknown. Here, we followed the NK cell repertoire dynamics in the lymph node and systemically during rituximab monotherapy in patients with FL. At baseline, NK cells in the tumor lymph node had a naïve phenotype albeit they were more differentiated than NK cells derived from control tonsils as determined by the frequency of CD56dim NK cells and the expression of killer cell immunoglobulin-like receptors (KIR), CD57 and CD16. Rituximab therapy induced a rapid drop in NK cell numbers coinciding with a relative increase in the frequency of Ki67+ NK cells both in the lymph node and peripheral blood. The Ki67+ NK cells had slightly increased expression of CD16, CD57 and higher levels of granzyme A and perforin. The in vivo activation of NK cells was paralleled by a temporary loss of in vitro functionality, primarily manifested as decreased IFNγ production in response to rituximab-coated targets. However, patients with pre-existing NKG2C+ adaptive NK cell subsets showed less Ki67 upregulation and were refractory to the loss of functionality. These data reveal variable imprints of rituximab monotherapy on the NK cell repertoire, which may depend on pre-existing repertoire diversity.


Subject(s)
Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphoma, Follicular/drug therapy , Lymphoma, Follicular/immunology , Rituximab/immunology , Rituximab/therapeutic use , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , Antibody-Dependent Cell Cytotoxicity/immunology , CD57 Antigens/immunology , Granzymes/immunology , Humans , Interferon-gamma/immunology , Ki-67 Antigen/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Middle Aged , NK Cell Lectin-Like Receptor Subfamily C/immunology , Perforin/immunology , Receptors, IgG/immunology , Receptors, KIR/immunology , Up-Regulation/drug effects , Up-Regulation/immunology
13.
Nat Commun ; 10(1): 514, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30705279

ABSTRACT

Inhibitory signaling during natural killer (NK) cell education translates into increased responsiveness to activation; however, the intracellular mechanism for functional tuning by inhibitory receptors remains unclear. Secretory lysosomes are part of the acidic lysosomal compartment that mediates intracellular signalling in several cell types. Here we show that educated NK cells expressing self-MHC specific inhibitory killer cell immunoglobulin-like receptors (KIR) accumulate granzyme B in dense-core secretory lysosomes that converge close to the centrosome. This discrete morphological phenotype is independent of transcriptional programs that regulate effector function, metabolism and lysosomal biogenesis. Meanwhile, interference of signaling from acidic Ca2+ stores in primary NK cells reduces target-specific Ca2+-flux, degranulation and cytokine production. Furthermore, inhibition of PI(3,5)P2 synthesis, or genetic silencing of the PI(3,5)P2-regulated lysosomal Ca2+-channel TRPML1, leads to increased granzyme B and enhanced functional potential, thereby mimicking the educated state. These results indicate an intrinsic role for lysosomal remodeling in NK cell education.


Subject(s)
Killer Cells, Natural/metabolism , Lysosomes/metabolism , Aminopyridines/pharmacology , Animals , Granzymes/metabolism , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , K562 Cells , Killer Cells, Natural/drug effects , Lysosomal-Associated Membrane Protein 1/genetics , Lysosomal-Associated Membrane Protein 1/metabolism , Lysosomes/drug effects , Mice , Receptors, KIR/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology
14.
J Immunol ; 202(3): 736-746, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30578306

ABSTRACT

Adoptive transfer of allogeneic NK cells holds great promise for cancer immunotherapy. There is a variety of protocols to expand NK cells in vitro, most of which are based on stimulation with cytokines alone or in combination with feeder cells. Although IL-15 is essential for NK cell homeostasis in vivo, it is commonly used at supraphysiological levels to induce NK cell proliferation in vitro. As a result, adoptive transfer of such IL-15-addicted NK cells is associated with cellular stress because of sudden cytokine withdrawal. In this article, we describe a dose-dependent addiction to IL-15 during in vitro expansion of human NK cells, leading to caspase-3 activation and profound cell death upon IL-15 withdrawal. NK cell addiction to IL-15 was tightly linked to the BCL-2/BIM ratio, which rapidly dropped during IL-15 withdrawal. Furthermore, we observed a proliferation-dependent induction of BIM short, a highly proapoptotic splice variant of BIM in IL-15-activated NK cells. These findings shed new light on the molecular mechanisms involved in NK cell apoptosis following cytokine withdrawal and may guide future NK cell priming strategies in a cell therapy setting.


Subject(s)
Bcl-2-Like Protein 11/metabolism , Cell Proliferation/drug effects , Interleukin-15/pharmacology , Killer Cells, Natural/drug effects , Apoptosis , Bcl-2-Like Protein 11/genetics , Caspase 3/metabolism , Cell Death/drug effects , Cell Death/immunology , Humans , Interleukin-15/immunology , K562 Cells , Killer Cells, Natural/immunology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
15.
Front Immunol ; 9: 2743, 2018.
Article in English | MEDLINE | ID: mdl-30542346

ABSTRACT

Natural killer (NK) cells are innate lymphocytes with a strong antitumor ability. In tumor patients, such as multiple myeloma (MM) patients, an elevated number of NK cells after stem cell transplantation (SCT) has been reported to be correlated with a higher overall survival rate. With the aim of improving NK cell use for adoptive cell therapy, we also addressed the cytotoxicity of patient-derived, cytokine-stimulated NK cells against MM cells at specific time points: at diagnosis and before and after autologous stem cell transplantation. Remarkably, after cytokine stimulation, the patients' NK cells did not significantly differ from those of healthy donors. In a small cohort of MM patients, we were able to isolate autologous tumor cells, and we could demonstrate that IL-2/15 stimulated autologous NK cells were able to significantly improve their killing capacity of autologous tumor cells. With the aim to further improve the NK cell killing capacity against MM cells, we investigated the potential use of NK specific check point inhibitors with focus on NKG2A because this inhibitory NK cell receptor was upregulated following ex vivo cytokine stimulation and MM cells showed HLA-E expression that could even be increased by exposure to IFN-γ. Importantly, blocking of NKG2A resulted in a significant increase in the NK cell-mediated lysis of different MM target cells. Finally, these results let suggest that combining cytokine induced NK cell activation and the specific check point inhibition of the NKG2A-mediated pathways can be an effective strategy to optimize NK cell therapeutic approaches for treatment of multiple myeloma.


Subject(s)
Cytotoxicity, Immunologic/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Adult , Aged , Hematopoietic Stem Cell Transplantation/methods , Histocompatibility Antigens Class I/immunology , Humans , Interferon-gamma/immunology , Interleukin-15/immunology , Interleukin-2/immunology , Middle Aged , NK Cell Lectin-Like Receptor Subfamily C/immunology , Transplantation, Autologous/methods , HLA-E Antigens
16.
J Vis Exp ; (116)2016 10 30.
Article in English | MEDLINE | ID: mdl-27842341

ABSTRACT

Natural killer (NK) cells are an important part of the human tumor immune surveillance system. NK cells are able to distinguish between healthy and virus-infected or malignantly transformed cells due to a set of germline encoded inhibitory and activating receptors. Upon virus or tumor cell recognition a variety of different NK cell functions are initiated including cytotoxicity against the target cell as well as cytokine and chemokine production leading to the activation of other immune cells. It has been demonstrated that accurate NK cell functions are crucial for the treatment outcome of different virus infections and malignant diseases. Here a simple and reliable method is described to analyze different NK cell functions using a flow cytometry-based assay. NK cell functions can be evaluated not only for the whole NK cell population, but also for different NK cell subsets. This technique enables scientists to easily study NK cell functions in healthy donors or patients in order to reveal their impact on different malignancies and to further discover new therapeutic strategies.


Subject(s)
Flow Cytometry , Killer Cells, Natural , Cytokines , Humans , Neoplasms
17.
Oncoimmunology ; 5(8): e1184802, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27622058

ABSTRACT

The immunosuppressive tumor microenvironment represents one of the main obstacles for immunotherapy of cancer. The tumor milieu is among others shaped by tumor metabolites such as 5'-deoxy-5'-methylthioadenosine (MTA). Increased intratumoral MTA levels result from a lack of the MTA-catabolizing enzyme methylthioadenosine phosphorylase (MTAP) in tumor cells and are found in various tumor entities. Here, we demonstrate that MTA suppresses proliferation, activation, differentiation, and effector function of antigen-specific T cells without eliciting cell death. Conversely, if MTA is added to highly activated T cells, MTA exerts cytotoxic effects on T cells. We identified the Akt pathway, a critical signal pathway for T cell activation, as a target of MTA, while, for example, p38 remained unaffected. Next, we provide evidence that MTA exerts its immunosuppressive effects by interfering with protein methylation in T cells. To confirm the relevance of the suppressive effects of exogenously added MTA on human T cells, we used an MTAP-deficient tumor cell-line that was stably transfected with the MTAP-coding sequence. We observed that T cells stimulated with MTAP-transfected tumor cells revealed a higher proliferative capacity compared to T cells stimulated with Mock-transfected cells. In conclusion, our findings reveal a novel immune evasion strategy of human tumor cells that could be of interest for therapeutic targeting.

18.
Front Immunol ; 6: 583, 2015.
Article in English | MEDLINE | ID: mdl-26635797

ABSTRACT

High-dose chemotherapy with consecutive autologous stem cell transplantation (autoSCT) is a well-established treatment option for patients suffering from malignant lymphoma or multiple myeloma. Natural killer (NK) cells are an important part of the immune surveillance, and their cell number after autoSCT is predictive for progression-free and overall survival. To improve knowledge about the role of NK cells after autoSCT, we investigated different NK cell subgroups, their phenotype, and their functions in patients treated with autoSCT. Directly after leukocyte regeneration (>1000 leukocytes/µl) following autoSCT, CD56(++) NK cells were the major NK cell subset. Surprisingly, these cells showed unusually high surface expression levels of CD57 and killer Ig-like receptors (KIRs) compared to expression levels before or at later time points after autoSCT. Moreover, these NK cells strongly upregulated KIR2DL2/3/S2 and KIR3DL1, whereas KIR2DL1/S1 remained constant, indicating that this cell population arose from more immature NK cells instead of from activated mature ones. Remarkably, NK cells were already able to degranulate and produce IFN-γ and MIP-1ß upon tumor interaction early after leukocyte regeneration. In conclusion, we describe an unusual upregulation of CD57 and KIRs on CD56(++) NK cells shortly after autoSCT. Importantly, these NK cells were functionally competent upon tumor interaction at this early time point.

19.
Endocrinology ; 153(9): 4367-79, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22733969

ABSTRACT

Natural killer (NK) cells belong to the innate immune system. Besides their role in antitumor immunity, NK cells also regulate the activity of other cells of the immune system, including dendritic cells, macrophages, and T cells, and may, therefore, be involved in autoimmune processes. The aim of the present study was to clarify the role of NK cells within this context. Using two mouse models for type 1 diabetes mellitus, a new subset of NK cells with regulatory function was identified. These cells were generated from conventional NK cells by incubation with IL-18 and are characterized by the expression of the surface markers CD117 (also known as c-Kit, stem cell factor receptor) and programmed death (PD)-ligand 1. In vitro analyses demonstrated a direct lysis activity of IL-18-stimulated NK cells against activated insulin-specific CD8(+) T cells in a PD-1/PD-ligand 1-dependent manner. Flow cytometry analyses revealed a large increase of splenic and lymphatic NK1.1(+)/c-Kit(+) NK cells in nonobese diabetic mice at 8 wk of age, the time point of acceleration of adaptive cytotoxic immunity. Adoptive transfer of unstimulated and IL-18-stimulated NK cells into streptozotocin-treated mice led to a delayed diabetes development and partial disease prevention in the group treated with IL-18-stimulated NK cells. Consistent with these data, mild diabetes was associated with increased numbers of NK1.1(+)/c-Kit(+) NK cells within the islets. Our results demonstrate a direct link between innate and adaptive immunity in autoimmunity with newly identified immunoregulatory NK cells displaying a potential role as immunosuppressors.


Subject(s)
Autoimmunity/immunology , CD8 Antigens/metabolism , Killer Cells, Natural/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Apoptosis/physiology , Cells, Cultured , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Flow Cytometry , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Microscopy, Fluorescence , Reverse Transcriptase Polymerase Chain Reaction
20.
Mol Cell Endocrinol ; 337(1-2): 52-61, 2011 Apr 30.
Article in English | MEDLINE | ID: mdl-21291954

ABSTRACT

Lymphatic infiltration is a well known phenomenon in different tumors including endocrine malignancies. However, little is known about the role of antigen-presenting cells and T cell activation in this context. The aim of our study was to investigate the quantity and function of CD14+/CD56+ monocytes in tumor patients including endocrine malignancies. First, these cells were characterized in peripheral blood of endocrine and non-endocrine cancer patients as well as in tumor tissue samples. Cancer patients had in mean 3.7 times more CD14+/CD56+ monocytes in the peripheral blood compared to healthy controls (p≤0.0001), while the highest frequencies were seen in patients with heavy tumor load. Importantly, these cells additionally expressed several NK cell markers. A proof of CD14+/CD56+ infiltrations into papillary thyroid carcinoma was shown by immunohistochemical analyses. Functional analyses revealed an apoptosis inducing capacity in vitro after IFN-α re-stimulation. Our data indicate the importance of tumor-lysing monocytes in antitumor immunity.


Subject(s)
Lymphocytes, Tumor-Infiltrating/cytology , Neoplasms/pathology , Thyroid Neoplasms/pathology , Adult , Aged , Apoptosis , Biomarkers, Tumor/metabolism , CD3 Complex/metabolism , CD56 Antigen/metabolism , Carcinoma , Carcinoma, Papillary , Case-Control Studies , Cell Count , Female , Humans , Lipopolysaccharide Receptors/metabolism , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Neoplasms/immunology , Neoplasms/metabolism , Phenotype , Thyroid Cancer, Papillary , Thyroid Neoplasms/immunology , Thyroid Neoplasms/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL