Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 252
Filter
1.
Microorganisms ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38399662

ABSTRACT

Transfusion of bacterially contaminated platelets, although rare, is still a major cause of mortality and morbidity despite the introduction of many methods to limit this over the past 20 years. The methods used include improved donor skin disinfection, diversion of the first part of donations, use of apheresis platelet units rather than whole-blood derived pools, primary and secondary testing by culture or rapid test, and use of pathogen reduction. Primary culture has been in use the US since 2004, using culture 24 h after collection of volumes of 4-8 mL from apheresis collections and whole-blood derived pools inoculated into aerobic culture bottles, with limited use of secondary testing by culture or rapid test to extend shelf-life from 5 to 7 days. Primary culture was introduced in the UK in 2011 using a "large-volume, delayed sampling" (LVDS) protocol requiring culture 36-48 h after collection of volumes of 16 mL from split apheresis units and whole-blood derived pools, inoculated into aerobic and anaerobic culture bottles (8 mL each), with a shelf-life of 7 days. Pathogen reduction using amotosalen has been in use in Europe since 2002, and was approved for use in the US in 2014. In the US, recent FDA guidance, effective October 2021, recommended several strategies to limit bacterial contamination of platelet products, including pathogen reduction, variants of the UK LVDS method and several two-step strategies, with shelf-life ranging from 3 to 7 days. The issues associated with bacterial contamination and these strategies are discussed in this review.

2.
Microbiol Resour Announc ; 13(4): e0115223, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38411071

ABSTRACT

Surgically removed bowels from Crohn's disease patients exhibit a novel form of micropathologies known as cavernous fistulous tract microlesions (CavFT), resembling fissures. We announce the genomes/plasmids and antimicrobial resistance genes of six CavFT bacterial isolates representing the Bacteroidota genera Bacteroides and Phocaeicola. Plasmids were identified in Bacteroides cellulosilyticus and Phocaeicola vulgatus.

3.
bioRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38260564

ABSTRACT

Crohn's disease (CD) has been traditionally viewed as a chronic inflammatory disease that cause gut wall thickening and complications, including fistulas, by mechanisms not understood. By focusing on Parabacteroides distasonis (presumed modern succinate-producing commensal probiotic), recovered from intestinal microfistulous tracts (cavernous fistulous micropathologies CavFT proposed as intermediate between 'mucosal fissures' and 'fistulas') in two patients that required surgery to remove CD-damaged ilea, we demonstrate that such isolates exert pathogenic/pathobiont roles in mouse models of CD. Our isolates are clonally-related; potentially emerging as transmissible in the community and mice; proinflammatory and adapted to the ileum of germ-free mice prone to CD-like ileitis (SAMP1/YitFc) but not healthy mice (C57BL/6J), and cytotoxic/ATP-depleting to HoxB8-immortalized bone marrow derived myeloid cells from SAMP1/YitFc mice when concurrently exposed to succinate and extracts from CavFT-derived E. coli , but not to cells from healthy mice. With unique genomic features supporting recent genetic exchange with Bacteroides fragilis -BGF539, evidence of international presence in primarily human metagenome databases, these CavFT Pdis isolates could represent to a new opportunistic Parabacteroides species, or subspecies (' cavitamuralis' ) adapted to microfistulous niches in CD.

4.
Diagn Microbiol Infect Dis ; 107(2): 115959, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536260

ABSTRACT

The BACT/ALERT® MP Reagent System is a broth culture medium for optimal detection and recovery of mycobacteria from clinical samples. The MP formulation was recently modified to improve detection and recovery times. A multicenter prospective matched pair study design was conducted to validate the performance of improved MP (MP-I) versus current MP (MP-C) bottles utilizing nonsterile and normally sterile samples, except blood, from patients suspected of having mycobacterial infections. A total of 1488 clinical samples were collected to obtain 212 mycobacteria samples by either or both MP culture bottles. MP-I and MP-C sensitivities were 86.6% and 81.4%, respectively, but the difference was not significant (P = 0.163) while specificities were 96.8% and 93.8%, respectively, and that difference was significant (P = 0.002). Overall recovery was 94.34% for MP-I and 88.68% for MP-C (recovery was 100% for both bottles with 52 seeded samples). Overall performance of MP-I was better than MP-C for sensitivity, specificity, and recovery.


Subject(s)
Mycobacterium Infections , Mycobacterium , Humans , Prospective Studies , Culture Media , Mycobacterium Infections/microbiology , Reagent Kits, Diagnostic
5.
Antimicrob Agents Chemother ; 66(5): e0179021, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35435707

ABSTRACT

Multidrug-resistant (MDR) Pseudomonas aeruginosa infections are a major clinical challenge. Many isolates are carbapenem resistant, which severely limits treatment options; thus, novel therapeutic combinations, such as imipenem-relebactam (IMI/REL), ceftazidime-avibactam (CAZ/AVI), ceftolozane-tazobactam (TOL/TAZO), and meropenem-vaborbactam (MEM/VAB) were developed. Here, we studied two extensively drug-resistant (XDR) P. aeruginosa isolates, collected in the United States and Mexico, that demonstrated resistance to IMI/REL. Whole-genome sequencing (WGS) showed that both isolates contained acquired GES ß-lactamases, intrinsic PDC and OXA ß-lactamases, and disruptions in the genes encoding the OprD porin, thereby inhibiting uptake of carbapenems. In one isolate (ST17), the entire C terminus of OprD deviated from the expected amino acid sequence after amino acid G388. In the other (ST309), the entire oprD gene was interrupted by an ISPa1328 insertion element after amino acid D43, rendering this porin nonfunctional. The poor inhibition by REL of the GES ß-lactamases (GES-2, -19, and -20; apparent Ki of 19 ± 2 µM, 23 ± 2 µM, and 21 ± 2 µM, respectively) within the isolates also contributed to the observed IMI/REL-resistant phenotype. Modeling of REL binding to the active site of GES-20 suggested that the acylated REL is positioned in an unstable conformation as a result of a constrained Ω-loop.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Amino Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Drug Combinations , Humans , Imipenem/pharmacology , Imipenem/therapeutic use , Microbial Sensitivity Tests , Porins/genetics , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , United States , beta-Lactamases/metabolism
6.
PLoS One ; 17(3): e0265129, 2022.
Article in English | MEDLINE | ID: mdl-35358221

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa is a persistent and difficult-to-treat pathogen in many patients, especially those with Cystic Fibrosis (CF). Herein, we describe a longitudinal analysis of a series of multidrug resistant (MDR) P. aeruginosa isolates recovered in a 17-month period, from a young female CF patient who underwent double lung transplantation. Our goal was to understand the genetic basis of the observed resistance phenotypes, establish the genomic population diversity, and define the nature of sequence evolution over time. METHODS: Twenty-two sequential P. aeruginosa isolates were obtained within a 17-month period, before and after a double-lung transplant. At the end of the study period, antimicrobial susceptibility testing, whole genome sequencing (WGS), phylogenetic analyses and RNAseq were performed in order to understand the genetic basis of the observed resistance phenotypes, establish the genomic population diversity, and define the nature of sequence changes over time. RESULTS: The majority of isolates were resistant to almost all tested antibiotics. A phylogenetic reconstruction revealed 3 major clades representing a genotypically and phenotypically heterogeneous population. The pattern of mutation accumulation and variation of gene expression suggested that a group of closely related strains was present in the patient prior to transplantation and continued to change throughout the course of treatment. A trend toward accumulation of mutations over time was observed. Different mutations in the DNA mismatch repair gene mutL consistent with a hypermutator phenotype were observed in two clades. RNAseq performed on 12 representative isolates revealed substantial differences in the expression of genes associated with antibiotic resistance and virulence traits. CONCLUSIONS: The overwhelming current practice in the clinical laboratories setting relies on obtaining a pure culture and reporting the antibiogram from a few isolated colonies to inform therapy decisions. Our analyses revealed significant underlying genomic heterogeneity and unpredictable evolutionary patterns that were independent of prior antibiotic treatment, highlighting the need for comprehensive sampling and population-level analysis when gathering microbiological data in the context of CF P. aeruginosa chronic infection. Our findings challenge the applicability of antimicrobial stewardship programs based on single-isolate resistance profiles for the selection of antibiotic regimens in chronic infections such as CF.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Drug Resistance, Multiple , Female , Humans , Microbial Sensitivity Tests , Phylogeny , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa
7.
J Clin Microbiol ; 60(3): e0209821, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35138924

ABSTRACT

The Acuitas antimicrobial resistance (AMR) gene panel is a qualitative, multiplex, nucleic acid-based in vitro diagnostic test for the detection and differentiation of 28 antimicrobial resistance markers associated with not susceptible results (NS; i.e., intermediate or resistant) to one or more antimicrobial agents among cultured isolates of select Enterobacterales, Pseudomonas aeruginosa, and Enterococcus faecalis. This study was conducted at four sites and included testing of 1,224 deidentified stocks created from 584 retrospectively collected isolates and 83 prospectively collected clinical isolates. The Acuitas results were compared with a combined reference standard including whole-genome sequencing, organism identification, and phenotypic antimicrobial susceptibility testing. The positive percent agreement (PPA) for FDA-cleared AMR targets ranged from 94.4% for MCR-1 to 100% for armA, CTX-M-2, DHA, IMP, OXA-9, SHV, vanA, and VEB. The negative percent agreement (NPA) for the majority of targets was ≥99%, except for AAC, AAD, CMY-41, P. aeruginosa gyrA mutant, Sul1, Sul2, and TEM targets (range, 96.5% to 98.5%). Three AMR markers did not meet FDA inclusion criteria (GES, SPM, and MCR-2). For each organism, 1 to 22 AMR targets met the minimum reportable PPA/NPA and correlated with ≥80% positive predictive value with associated NS results for at least one agent (i.e., the probability of an organism carrying an AMR marker testing NS to the associated agent). We demonstrate that the Acuitas AMR gene panel is an accurate method to detect a broad array of AMR markers among cultured isolates. The AMR markers were further associated with expected NS results for specific agent-organism combinations.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Pseudomonas aeruginosa/genetics , Retrospective Studies
8.
Antimicrob Agents Chemother ; 66(3): e0214821, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35099271

ABSTRACT

Direct antimicrobial susceptibility testing (AST) of positive blood cultures with Gram-negative bacteria produces results within 24 h, compared to 48 to 96 h with conventional methods. Positive clinical blood cultures were studied, supplemented with contrived blood cultures inoculated with a spectrum of resistant isolates. Bacterial inocula used for direct AST were quantitated. Direct AST was performed using MicroScan NM43 trays inoculated directly from positive blood cultures (100 µL in 25 mL water) and incubated using a WalkAway instrument, with trays read after 16 h. Reference AST was performed the following day from growth on solid medium using the same trays. Agreement of AST results between direct and reference methods, with and without the use of three expert rules for ß-lactams, was evaluated using FDA categorical agreement criteria. Of 86 specimens tested (41 clinical specimens and 45 contrived specimens), the mean bacterial load in positive blood cultures was 8.98 log10 CFU/mL. Fifteen isolates contained extended-spectrum ß-lactamases, and 27 contained carbapenemases. Of 1,985 pairs of AST categorical results for 25 antimicrobials, 55.0% were susceptible, 4.7% intermediate, and 40.4% resistant by reference testing. Overall categorical agreement was 92.3%, with 5.3% minor errors, 1.9% major errors, and 0.4% very major errors. Agreement was higher for non-ß-lactam agents (95.8%) than for ß-lactam agents (90.3%; P < 0.0001). Application of expert rules increased agreement for ß-lactam agents to 94.6%. The methods used achieved the study goal of producing accurate, cost-effective AST results directly from positive blood cultures using MicroScan trays with a 16-h incubation time without the need for additional testing. Use of three expert ß-lactam rules improved accuracy.


Subject(s)
Blood Culture , beta-Lactams , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Microbial Sensitivity Tests , beta-Lactams/pharmacology
9.
Chronic Obstr Pulm Dis ; 9(1): 4-14, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-34748694

ABSTRACT

RATIONALE: High-flow nasal therapy (HFNT) has beneficial effects in patients hospitalized with acute hypoxemic respiratory failure. HFNT has not been extensively studied following hospitalization for an acute exacerbation of chronic obstructive pulmonary disease (AECOPD). OBJECTIVE: We explored the feasibility of conducting a multicentered trial to evaluate the use of HFNT to increase the time to next moderate/ severe exacerbation in patients recently hospitalized for a COPD exacerbation. In this pilot study we measured the hours of home daily HFNT use, maximally tolerated flow rates and temperature, and side effects for a period of 90 days. METHODS: Patients were enrolled in a 90-day, open-labeled pilot study of HFNT to determine the safety and feasibility of home use for daily outpatient COPD management. Patients ≥ 40 years of age with prior hospitalization within the past 12 weeks for an AECOPD were enrolled. COPD was the primary diagnosis in all patients. RESULTS: Thirty patients presented for HFNT titration. Two dropped out; 1 after receiving a lung transplant and the other was lost to follow-up. The remaining 28 patients completed 90 days of HFNT. None withdrew from HFNT due to intolerance. Use of HFNT averaged 6.8 (2.1) hours daily. CONCLUSIONS: Daily home HFNT for up to 3 months is feasible in COPD patients following hospitalization for AECOPD. Improvements observed in disease-specific quality of life, respiratory symptoms, and 6-minute walk distance suggest the need for a prospective multicenter controlled clinical trial.

10.
Gut Microbes ; 13(1): 1922241, 2021.
Article in English | MEDLINE | ID: mdl-34196581

ABSTRACT

Parabacteroides distasonis is the type strain for the genus Parabacteroides, a group of gram-negative anaerobic bacteria that commonly colonize the gastrointestinal tract of numerous species. First isolated in the 1930s from a clinical specimen as Bacteroides distasonis, the strain was re-classified to form the new genus Parabacteroides in 2006. Currently, the genus consists of 15 species, 10 of which are listed as 'validly named' (P. acidifaciens, P. chartae, P. chinchillae, P. chongii, P. distasonis, P. faecis, P. goldsteinii, P. gordonii, P. johnsonii, and P. merdae) and 5 'not validly named' (P. bouchesdurhonensis, P. massiliensis, P. pacaensis, P. provencensis, and P. timonensis) by the List of Prokaryotic names with Standing in Nomenclature. The Parabacteroides genus has been associated with reports of both beneficial and pathogenic effects in human health. Herein, we review the literature on the history, ecology, diseases, antimicrobial resistance, and genetics of this bacterium, illustrating the effects of P. distasonis on human and animal health.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteroidetes/drug effects , Bacteroidetes/isolation & purification , Drug Resistance, Bacterial , Gastrointestinal Microbiome , Gram-Negative Bacterial Infections/microbiology , Animals , Bacteroidetes/genetics , Bacteroidetes/physiology , Humans , Phylogeny , Probiotics/chemistry , Probiotics/isolation & purification
11.
Eur J Med Chem ; 220: 113436, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33933754

ABSTRACT

Serious infections caused by multidrug-resistant (MDR) organisms (Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii) present a critical need for innovative drug development. Herein, we describe the preclinical evaluation of YU253911, 2, a novel γ-lactam siderophore antibiotic with potent antimicrobial activity against MDR Gram-negative pathogens. Penicillin-binding protein (PBP) 3 was shown to be a target of 2 using a binding assay with purified P. aeruginosa PBP3. The specific binding interactions with P. aeruginosa were further characterized with a high-resolution (2.0 Å) X-ray structure of the compound's acylation product in P. aeruginosa PBP3. Compound 2 was shown to have a concentration >1 µg/ml at the 6 h time point when administered intravenously or subcutaneously in mice. Employing a meropenem resistant strain of P. aeruginosa, 2 was shown to have dose-dependent efficacy at 50 and 100 mg/kg q6h dosing in a mouse thigh infection model. Lastly, we showed that a novel γ-lactam and ß-lactamase inhibitor (BLI) combination can effectively lower minimum inhibitory concentrations (MICs) against carbapenem resistant Acinetobacter spp. that demonstrated decreased susceptibility to 2 alone.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Klebsiella pneumoniae/drug effects , Lactams/pharmacology , Siderophores/pharmacology , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Lactams/chemical synthesis , Lactams/chemistry , Microbial Sensitivity Tests , Molecular Structure , Pseudomonas aeruginosa/drug effects , Siderophores/chemical synthesis , Siderophores/chemistry , Structure-Activity Relationship
12.
Expert Rev Mol Diagn ; 21(6): 563-578, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33926351

ABSTRACT

INTRODUCTION: Until recently antimicrobial susceptibility testing (AST) methods based on the demonstration of phenotypic susceptibility in 16-24 h remained largely unchanged. AREAS COVERED: Advances in rapid phenotypic and molecular-based AST systems. EXPERT OPINION: AST has changed over the past decade, with many rapid phenotypic and molecular methods developed to demonstrate phenotypic or genotypic resistance, or biochemical markers of resistance such as ß-lactamases associated with carbapenem resistance. Most methods still require isolation of bacteria from specimens before both legacy and newer methods can be used. Bacterial identification by MALDI-TOF mass spectroscopy is now widely used and is often key to the interpretation of rapid AST results. Several PCR arrays are available to detect the most frequent pathogens associated with bloodstream infections and their major antimicrobial resistance genes. Many advances in whole-genome sequencing of bacteria and fungi isolated by culture as well as directly from clinical specimens have been made but are not yet widely available. High cost and limited throughput are the major obstacles to uptake of rapid methods, but targeted use, continued development and decreasing costs are expected to result in more extensive use of these increasingly useful methods.


Subject(s)
Anti-Infective Agents , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Bacteria/genetics , Humans , Microbial Sensitivity Tests , beta-Lactamases/genetics
14.
J Clin Med ; 9(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256044

ABSTRACT

High-flow nasal therapy (HFNT) is a unique system that delivers humidified, heated oxygen-enriched air via nasal cannula at high flow rates. It is a promising therapy for chronic obstructive pulmonary disease (COPD) patients. Several studies have examined the physiologic effects of this therapy in the patient population and have revealed that it improves mucociliary clearance, reduces nasopharyngeal dead space, and subsequently increases CO2 washout. It also improves alveolar recruitment and gas exchange. These mechanisms may explain the promising results observed in recently published studies that examined the role of HFNT in stable COPD patients.

15.
Clin Epidemiol ; 12: 1171-1181, 2020.
Article in English | MEDLINE | ID: mdl-33149694

ABSTRACT

PURPOSE: Medication patterns include all medications in an individual's clinical profile. We aimed to identify chronic co-morbidity treatment patterns through medication use among COPDGene participants and determine whether these patterns were associated with mortality, acute exacerbations of chronic obstructive pulmonary disease (AECOPD) and quality of life. MATERIALS AND METHODS: Participants analyzed here completed Phase 1 (P1) and/or Phase 2 (P2) of COPDGene. Latent class analysis (LCA) was used to identify medication patterns and assign individuals into unobserved LCA classes. Mortality, AECOPD, and the St. George's Respiratory Questionnaire (SGRQ) health status were compared in different LCA classes through survival analysis, logistic regression, and Kruskal-Wallis test, respectively. RESULTS: LCA identified 8 medication patterns from 32 classes of chronic comorbid medications. A total of 8110 out of 10,127 participants with complete covariate information were included. Survival analysis adjusted for covariates showed, compared to a low medication use class, mortality was highest in participants with hypertension+diabetes+statin+antiplatelet medication group. Participants in hypertension+SSRI+statin medication group had the highest odds of AECOPD and the highest SGRQ score at both P1 and P2. CONCLUSION: Medication pattern can serve as a good indicator of an individual's comorbidities profile and improves models predicting clinical outcomes.

16.
Infect Dis Clin North Am ; 34(4): 659-676, 2020 12.
Article in English | MEDLINE | ID: mdl-33011047

ABSTRACT

The evolution of resistance to antimicrobial agents in gram-negatives has challenged the role of the clinical microbiology laboratory to implement new methods for their timely detection. Recent development has enabled the use of novel methods for more rapid pathogen identification, antimicrobial susceptibility testing, and detection of resistance markers. Commonly used methods improve the rapidity of resistance detection from both cultured bacteria and specimens. This review focuses on the commercially available systems available together with their technical performance and possible clinical impact.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Gram-Negative Bacteria/isolation & purification , Microbiological Techniques/methods , Bacterial Proteins/genetics , Bacterial Typing Techniques , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/drug effects , Humans , Laboratories , Microbial Sensitivity Tests , Nucleic Acid Amplification Techniques , Whole Genome Sequencing
17.
J Antimicrob Chemother ; 75(10): 2760-2768, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32681170

ABSTRACT

OBJECTIVES: To investigate the genomic context of a novel resistance island (RI) in multiply antibiotic-resistant Acinetobacter baumannii clinical isolates and global isolates. METHODS: Using a combination of long and short reads generated from the Oxford Nanopore and Illumina platforms, contiguous chromosomes and plasmid sequences were determined. BLAST-based analysis was used to identify the RI insertion target. RESULTS: Genomes of four multiply antibiotic-resistant A. baumannii clinical strains, from a US hospital system, belonging to prevalent MLST ST2 (Pasteur scheme) and ST281 (Oxford scheme) clade F isolates were sequenced to completion. A class 1 integron carrying aadB (tobramycin resistance) and aadA2 (streptomycin/spectinomycin resistance) was identified. The class 1 integron was 6.8 kb, bounded by IS26 at both ends, and embedded in a new target location between an α/ß-hydrolase and a reductase. Due to its novel insertion site and unique RI composition, we suggest naming this novel RI AbGRI4. Molecular analysis of global A. baumannii isolates identified multiple AbGRI4 RI variants in non-ST2 clonal lineages, including variations in the resistance gene cassettes, integron backbone and insertion breakpoints at the hydrolase gene. CONCLUSIONS: A novel RI insertion target harbouring a class 1 integron was identified in a subgroup of ST2/ST281 clinical isolates. Variants of the RI suggested evolution and horizontal transfer of the RI across clonal lineages. Long- and short-read hybrid assembly technology completely resolved the genomic context of IS-bounded RIs, which was not possible using short reads alone.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Humans , Integrons , Islands , Multilocus Sequence Typing
18.
J Med Chem ; 63(11): 5990-6002, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32420736

ABSTRACT

Treatment of multidrug-resistant Gram-negative bacterial pathogens represents a critical clinical need. Here, we report a novel γ-lactam pyrazolidinone that targets penicillin-binding proteins (PBPs) and incorporates a siderophore moiety to facilitate uptake into the periplasm. The MIC values of γ-lactam YU253434, 1, are reported along with the finding that 1 is resistant to hydrolysis by all four classes of ß-lactamases. The druglike characteristics and mouse PK data are described along with the X-ray crystal structure of 1 binding to its target PBP3.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Lactams/chemistry , Siderophores/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacokinetics , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Gram-Negative Bacteria/drug effects , Half-Life , Lactams/metabolism , Lactams/pharmacokinetics , Lactams/pharmacology , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Penicillin-Binding Proteins/antagonists & inhibitors , Penicillin-Binding Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Siderophores/metabolism
19.
Transfusion ; 60(5): 974-985, 2020 05.
Article in English | MEDLINE | ID: mdl-32357261

ABSTRACT

BACKGROUND: The high incidence of septic transfusion reactions (STRs) led to testing being mandated by AABB from 2004. This was implemented by primary culture of single-donor apheresis platelets (APs) from 2004 and prestorage pooled platelets (PSPPs) from 2007. STUDY DESIGN/METHODS: Platelet (PLT) aliquots were cultured at issue and transfusion reactions evaluated at our hospital. Bacterial contamination and STR rates (shown as rates per million transfusions in Results) were evaluated before and after introduction of primary culture by blood centers that used a microbial detection system (BacT/ALERT, bioMerieux) or enhanced bacterial detection system (eBDS, Haemonetics). RESULTS: A total of 28,457 PLTs were cultured during pre-primary culture periods (44.7% APs; 55.3% at-issue pooled PLTs [AIPPs]) and 97,595 during post-primary culture periods (79.3% APs; 20.7% PSPPs). Forty-three contaminated units were identified in preculture and 34 in postculture periods (rates, 1511 vs. 348; p < 0.0001). Contamination rates of APs were significantly lower than AIPPs in the preculture (393 vs. 2415; p < 0.0001) but not postculture period compared to PSPPs (387 vs. 198; p = 0.9). STR rates (79 vs. 90; p = 0.98) were unchanged with APs but decreased considerably with pooled PLTs (826 vs. 50; p = 0.0006). Contamination (299 vs. 324; p = 0.84) and STR rates (25 vs. 116; p = 0.22) were similar for PLTs tested by BacT/ALERT and eBDS primary culture methods. A change in donor skin preparation method in 2012 was associated with decreased contamination and STR rates. CONCLUSION: Primary culture significantly reduced bacterial contamination and STR associated with pooled but not AP PLTs. Measures such as secondary testing near time of use or pathogen reduction are needed to further reduce STRs.


Subject(s)
Bacterial Infections/epidemiology , Drug Contamination/statistics & numerical data , Platelet Transfusion , Primary Cell Culture , Sepsis/epidemiology , Transfusion Reaction/epidemiology , Academic Medical Centers , Adult , Bacterial Infections/blood , Bacterial Infections/transmission , Blood Component Removal/adverse effects , Blood Component Removal/history , Blood Component Removal/standards , Blood Component Removal/statistics & numerical data , Blood Platelets/cytology , Blood Platelets/microbiology , Blood Safety/adverse effects , Blood Safety/history , Blood Safety/statistics & numerical data , Blood Transfusion/history , Blood Transfusion/statistics & numerical data , Cells, Cultured , Child , History, 20th Century , History, 21st Century , Humans , Incidence , Platelet Transfusion/adverse effects , Platelet Transfusion/history , Platelet Transfusion/statistics & numerical data , Primary Cell Culture/history , Primary Cell Culture/standards , Primary Cell Culture/statistics & numerical data , Retrospective Studies , Sepsis/blood , Sepsis/etiology , Transfusion Reaction/microbiology , United States/epidemiology
20.
Article in English | MEDLINE | ID: mdl-32152078

ABSTRACT

Plazomicin was tested against 697 recently acquired carbapenem-resistant Klebsiella pneumoniae isolates from the Great Lakes region of the United States. Plazomicin MIC50 and MIC90 values were 0.25 and 1 mg/liter, respectively; 680 isolates (97.6%) were susceptible (MICs of ≤2 mg/liter), 9 (1.3%) intermediate (MICs of 4 mg/liter), and 8 (1.1%) resistant (MICs of >32 mg/liter). Resistance was associated with rmtF-, rmtB-, or armA-encoded 16S rRNA methyltransferases in all except 1 isolate.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Klebsiella pneumoniae/drug effects , Methyltransferases/genetics , Sisomicin/analogs & derivatives , Adult , Aged , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Female , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Male , Microbial Sensitivity Tests , Middle Aged , Sisomicin/pharmacology , United States , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...