Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 104: 117700, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38583236

ABSTRACT

Adenosine Deaminases Acting on RNA (ADARs) catalyze the deamination of adenosine to inosine in double-stranded RNA (dsRNA). ADARs' ability to recognize and edit dsRNA is dependent on local sequence context surrounding the edited adenosine and the length of the duplex. A deeper understanding of how editing efficiency is affected by mismatches, loops, and bulges around the editing site would aid in the development of therapeutic gRNAs for ADAR-mediated site-directed RNA editing (SDRE). Here, a SELEX (systematic evolution of ligands by exponential enrichment) approach was employed to identify dsRNA substrates that bind to the deaminase domain of human ADAR2 (hADAR2d) with high affinity. A library of single-stranded RNAs was hybridized with a fixed-sequence target strand containing the nucleoside analog 8-azanebularine that mimics the adenosine deamination transition state. The presence of this nucleoside analog in the library biased the screen to identify hit sequences compatible with adenosine deamination at the site of 8-azanebularine modification. SELEX also identified non-duplex structural elements that supported editing at the target site while inhibiting editing at bystander sites.


Subject(s)
Adenosine Deaminase , Purine Nucleosides , Ribonucleosides , Humans , Adenosine , Adenosine Deaminase/metabolism , Base Sequence , RNA, Double-Stranded , RNA, Guide, CRISPR-Cas Systems
2.
ACS Chem Biol ; 18(10): 2188-2199, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37040436

ABSTRACT

Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in duplex RNA. The inosine product preferentially base pairs with cytidine resulting in an effective A-to-G edit in RNA. ADAR editing can result in a recoding event alongside other alterations to RNA function. A consequence of ADARs' selective activity on duplex RNA is that guide RNAs (gRNAs) can be designed to target an adenosine of interest and promote a desired recoding event. One of ADAR's main limitations is its preference to edit adenosines with specific 5' and 3' nearest neighbor nucleotides (e.g., 5' U, 3' G). Current rational design approaches are well-suited for this ideal sequence context, but limited when applied to difficult-to-edit sites. Here we describe a strategy for the in vitro evaluation of very large libraries of ADAR substrates (En Masse Evaluation of RNA Guides, EMERGe). EMERGe allows for a comprehensive screening of ADAR substrate RNAs that complements current design approaches. We used this approach to identify sequence motifs for gRNAs that enable editing in otherwise difficult-to-edit target sites. A guide RNA bearing one of these sequence motifs enabled the cellular repair of a premature termination codon arising from mutation of the MECP2 gene associated with Rett Syndrome. EMERGe provides an advancement in screening that not only allows for novel gRNA design, but also furthers our understanding of ADARs' specific RNA-protein interactions.


Subject(s)
Adenosine Deaminase , RNA , Base Pairing , Hydrolysis , Inosine/genetics , Adenosine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...