Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Vasc Interv Radiol ; 35(1): 113-121.e3, 2024 01.
Article in English | MEDLINE | ID: mdl-37696432

ABSTRACT

PURPOSE: To improve radiopacity of radiolucent absorbable poly-p-dioxanone (PPDO) inferior vena cava filters (IVCFs) and demostrate their effectiveness in clot-trapping ability. MATERIALS AND METHODS: Tungsten nanoparticles (WNPs) were incorporated along with polyhydroxybutyrate (PHB), polycaprolactone (PCL), and polyvinylpyrrolidone (PVP) polymers to increase the surface adsorption of WNPs. The physicochemical and in vitro and in vivo imaging properties of PPDO IVCFs with WNPs with single-polymer PHB (W-P) were compared with those of WNPs with polymer blends consisting of PHB, PCL, and PVP (W-PB). RESULTS: In vitro analyses using PPDO sutures showed enhanced radiopacity with either W-P or W-PB coating, without compromising the inherent physicomechanical properties of the PPDO sutures. W-P- and W-PB-coated IVCFs were deployed successfully into the inferior vena cava of pig models with monitoring by fluoroscopy. At the time of deployment, W-PB-coated IVCFs showed a 2-fold increase in radiopacity compared to W-P-coated IVCFs. Longitudinal monitoring of in vivo IVCFs over a 12-week period showed a drastic decrease in radiopacity at Week 3 for both filters. CONCLUSIONS: The results highlight the utility of nanoparticles (NPs) and polymers for enhancing radiopacity of medical devices. Different methods of incorporating NPs and polymers can still be explored to improve the effectiveness, safety, and quality of absorbable IVCFs.


Subject(s)
Nanoparticles , Vena Cava Filters , Swine , Animals , Tungsten , Polymers , Vena Cava, Inferior/diagnostic imaging , Vena Cava, Inferior/surgery , Device Removal
2.
Brachytherapy ; 22(6): 736-745, 2023.
Article in English | MEDLINE | ID: mdl-37612174

ABSTRACT

PURPOSE: To determine the feasibility of quantitative apparent diffusion coefficient (ADC) acquisition during magnetic resonance imaging-guided brachytherapy (MRgBT) using reduced field-of-view (rFOV) diffusion-weighted imaging (DWI). METHODS AND MATERIALS: T2-weighted (T2w) MR and full-FOV single-shot echo planar (ssEPI) DWI were acquired in 7 patients with cervical or vaginal malignancy at baseline and prior to brachytherapy, while rFOV-DWI was acquired during MRgBT following brachytherapy applicator placement. The gross target volume (GTV) was contoured on the T2w images and registered to the ADC map. Voxels at the GTV's maximum Maurer distance comprised a central sub-volume (GTVcenter). Contour ADC mean and standard deviation were compared between timepoints using repeated measures ANOVA. RESULTS: ssEPI-DWI mean ADC increased between baseline and prebrachytherapy from 1.03 ± 0.18 10-3 mm2/s to 1.34 ± 0.28 10-3 mm2/s for the GTV (p = 0.06) and from 0.84 ± 0.13 10-3 mm2/s to 1.26 ± 0.25 10-3 mm2/s at the level of the GTVcenter (p = 0.03), consistent with early treatment response. rFOV-DWI during MRgBT demonstrated mean ADC values of 1.28 ± 0.14 10-3 mm2/s and 1.28 ± 0.19 10-3 mm2/s for the GTV and GTVcenter, respectively (p = 0.02 and p = 0.03 relative to baseline). No significant differences were observed between ssEPI-DWI and rFOV-DWI ADC measurements. CONCLUSIONS: Quantitative ADC measurement in the setting of MRI guided brachytherapy implant placement for cervical and vaginal cancers is feasible using rFOV-DWI, with comparable mean ADC comparable to prebrachytherapy ssEPI-DWI, and may enable MRI-guided radiotherapy targeting of low ADC, radiation resistant sub-volumes of tumor.


Subject(s)
Brachytherapy , Vaginal Neoplasms , Female , Humans , Vaginal Neoplasms/diagnostic imaging , Vaginal Neoplasms/radiotherapy , Brachytherapy/methods , Feasibility Studies , Diffusion Magnetic Resonance Imaging/methods , Reproducibility of Results
3.
Med Phys ; 50(12): 7879-7890, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37409792

ABSTRACT

BACKGROUND: Thermochemical ablation (TCA) is a minimally invasive therapy under development for hepatocellular carcinoma. TCA simultaneously delivers an acid (acetic acid, AcOH) and base (sodium hydroxide, NaOH) directly into the tumor, where the acid/base chemical reaction produces an exotherm that induces local ablation. However, AcOH and NaOH are not radiopaque, making monitoring TCA delivery difficult. PURPOSE: We address the issue of image guidance for TCA by utilizing cesium hydroxide (CsOH) as a novel theranostic component of TCA that is detectable and quantifiable with dual-energy CT (DECT). MATERIALS AND METHODS: To quantify the minimum concentration of CsOH that can be positively identified by DECT, the limit of detection (LOD) was established in an elliptical phantom (Multi-Energy CT Quality Assurance Phantom, Kyoto Kagaku, Kyoto, Japan) with two DECT technologies: a dual-source system (SOMATOM Force, Siemens Healthineers, Forchheim, Germany) and a split-filter, single-source system (SOMATOM Edge, Siemens Healthineers). The dual-energy ratio (DER) and LOD of CsOH were determined for each system. Cesium concentration quantification accuracy was evaluated in a gelatin phantom before quantitative mapping was performed in ex vivo models. RESULTS: On the dual-source system, the DER and LOD were 2.94 and 1.36-mM CsOH, respectively. For the split-filter system, the DER and LOD were 1.41- and 6.11-mM CsOH, respectively. The signal on cesium maps in phantoms tracked linearly with concentration (R2  = 0.99) on both systems with an RMSE of 2.56 and 6.72 on the dual-source and split-filter system, respectively. In ex vivo models, CsOH was detected following delivery of TCA at all concentrations. CONCLUSIONS: DECT can be used to detect and quantify the concentration of cesium in phantom and ex vivo tissue models. When incorporated in TCA, CsOH performs as a theranostic agent for quantitative DECT image-guidance.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Contrast Media , Sodium Hydroxide , Tomography, X-Ray Computed/methods , Phantoms, Imaging
4.
Radiol Clin North Am ; 61(4): 725-747, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37169434

ABSTRACT

Pelvic imaging is integral to contemporary radiotherapy (RT) management of gynecologic malignancies. For cervical, endometrial, vulvar, and vaginal cancers, three-dimensional imaging modalities aid in tumor staging and RT candidate selection and inform treatment strategy, including RT planning, execution, and posttherapy surveillance. State-of-the-art care routinely incorporates magnetic resonance (MR) imaging, 18F-fluorodeoxyglucose-PET/computed tomography (CT), and CT to guide external beam RT and brachytherapy, allowing the customization of RT plans to maximize patient outcomes and reduce treatment-related toxicities. Follow-up imaging identifies radiation-resistant and recurrent disease as well as short-term and long-term toxicities from RT.


Subject(s)
Genital Neoplasms, Female , Radiotherapy, Image-Guided , Female , Humans , Genital Neoplasms, Female/diagnostic imaging , Genital Neoplasms, Female/radiotherapy , Radiotherapy, Image-Guided/methods , Tomography, X-Ray Computed , Positron-Emission Tomography/methods , Radiologists , Radiotherapy Planning, Computer-Assisted/methods
5.
bioRxiv ; 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36798362

ABSTRACT

The use of absorbable inferior vena cava filters (IVCFs) constructed with poly-p-dioxanone (PPDO) eliminates risks and complications associated with the use of retrievable metallic filters. Radiopacity of radiolucent PPDO IVCFs can be improved with the incorporation of nanoparticles (NPs) made of high-atomic number materials such as gold and bismuth. In this study, we focused on incorporating tungsten NPs (WNPs), along with polyhydroxybutyrate (PHB), polycaprolactone (PCL), and polyvinylpyrrolidone (PVP) polymers to increase the surface adsorption of the WNPs. We compared the imaging properties of WNPs with single-polymer PHB (W-P) and WNPs with polymer blends consisting of PHB, PCL, and PVP (W-PB). Our in vitro analyses using PPDO sutures showed enhanced radiopacity with either W-P or W-PB coating, without compromising the inherent physico-mechanical properties of the PPDO sutures. We observed a more sustained release of WNPs from W-PB-coated sutures than W-P-coated sutures. We successfully deployed W-P- and W-PB-coated IVCFs into the inferior vena cava of pig models, with monitoring by fluoroscopy. At the time of deployment, W-PB-coated IVCFs showed a 2-fold increase in radiopacity compared to W-P-coated IVCFs. Longitudinal monitoring of in vivo IVCFs over a 12-week period showed a drastic decrease in radiopacity at week 3 for both filters. Results of this study highlight the utility of NPs and polymers for enhancing radiopacity of medical devices; however, different methods of incorporating NPs and polymers can still be explored to improve the efficacy, safety, and quality of absorbable IVCFs.

6.
J Vasc Interv Radiol ; 34(5): 782-789, 2023 05.
Article in English | MEDLINE | ID: mdl-36539151

ABSTRACT

PURPOSE: To evaluate the feasibility of using dual-energy computed tomography (CT) and theranostic cesium hydroxide (CsOH) for image guidance of thermochemical ablation (TCA) in a rabbit VX2 tumor model. MATERIALS AND METHODS: In vivo experiments were performed on New Zealand white rabbits, where VX2 tumor fragments (0.3 mL) were inoculated into the right and left flanks (n = 16 rabbits, 32 tumors). Catheters were placed in the approximate center of 1- to 2-cm diameter tumors under ultrasound guidance. TCA was delivered in 1 of 3 treatment groups: untreated control, 5-M TCA, or 10-M TCA. The TCA base reagent was doped with 250-mM CsOH. Dual-energy CT was performed before and after TCA. Cesium (CS)-specific images were postprocessed on the basis of previous phantom calibrations to determine Cs concentration. Line profiles were drawn through the ablation center. Twenty-four hours after TCA, subjects were euthanized, and the resulting damage was evaluated with histopathology. RESULTS: Cs was detected in 100% of treated tumors (n = 21). Line profiles indicated highest concentrations at the injection site and decreased concentrations at the tumor margins, with no Cs detected beyond the ablation zone. The maximum detected Cs concentration ranged from 14.39 to 137.33 mM. A dose-dependent trend in tissue necrosis was demonstrated between the 10-M TCA and 5-M TCA treatment groups (P = .0005) and untreated controls (P = .0089). CONCLUSIONS: Dual-energy CT provided image guidance for delivery, localization, and quantification of TCA in the rabbit VX2 model.


Subject(s)
Liver Neoplasms, Experimental , Tomography, X-Ray Computed , Rabbits , Animals , Tomography, X-Ray Computed/methods , Liver Neoplasms, Experimental/surgery , Cesium
7.
Brachytherapy ; 21(4): 369-388, 2022.
Article in English | MEDLINE | ID: mdl-35725550

ABSTRACT

PURPOSE: To present recommendations for the use of imaging for evaluation and procedural guidance of brachytherapy for cervical cancer patients. METHODS: An expert panel comprised of members of the Society of Abdominal Radiology Uterine and Ovarian Cancer Disease Focused Panel and the American Brachytherapy Society jointly assessed the existing literature and provide data-driven guidance on imaging protocol development, interpretation, and reporting. RESULTS: Image-guidance during applicator implantation reduces rates of uterine perforation by the tandem. Postimplant images may be acquired with radiography, computed tomography (CT), or magnetic resonance imaging (MRI), and CT or MRI are preferred due to a decrease in severe complications. Pre-brachytherapy T2-weighted MRI may be used as a reference for contouring the high-risk clinical target volume (HR-CTV) when CT is used for treatment planning. Reference CT and MRI protocols are provided for reference. CONCLUSIONS: Image-guided brachytherapy in locally advanced cervical cancer is essential for optimal patient management. Various imaging modalities, including orthogonal radiographs, ultrasound, computed tomography, and magnetic resonance imaging, remain integral to the successful execution of image-guided brachytherapy.


Subject(s)
Brachytherapy , Radiology , Uterine Cervical Neoplasms , Brachytherapy/methods , Consensus , Female , Humans , Magnetic Resonance Imaging/methods , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed/methods , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/radiotherapy
8.
ACS Biomater Sci Eng ; 8(4): 1676-1685, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35343679

ABSTRACT

Inferior vena cava filters (IVCFs) constructed with poly-p-dioxanone (PPDO) are promising alternatives to metallic filters and their associated risks and complications. Incorporating high-Z nanoparticles (NPs) improves PPDO IVCFs' radiopacity without adversely affecting their safety or performance. However, increased radiopacity from these studies are insufficient for filter visualization during fluoroscopy-guided PPDO IVCF deployment. This study focuses on the use of bismuth nanoparticles (BiNPs) as radiopacifiers to render sufficient signal intensity for the fluoroscopy-guided deployment and long-term CT monitoring of PPDO IVCFs. The use of polyhydroxybutyate (PHB) as an additional layer to increase the surface adsorption of NPs resulted in a 2-fold increase in BiNP coating (BiNP-PPDO IVCFs, 3.8%; BiNP-PPDO + PHB IVCFs, 6.2%), enabling complete filter visualization during fluoroscopy-guided IVCF deployment and, 1 week later, clot deployment. The biocompatibility, clot-trapping efficacy, and mechanical strength of the control PPDO (load-at-break, 6.23 ± 0.13 kg), BiNP-PPDO (6.10 ± 0.09 kg), and BiNP-PPDO + PHB (6.15 ± 0.13 kg) IVCFs did not differ significantly over a 12-week monitoring period in pigs. These results indicate that BiNP-PPDO + PHB can increase the radiodensity of a novel absorbable IVCF without compromising device strength. Visualizing the device under conventional radiographic imaging is key to allow safe and effective clinical translation of the device.


Subject(s)
Nanoparticles , Vena Cava Filters , Animals , Bismuth , Fluoroscopy , Nanoparticles/therapeutic use , Swine , Tomography, X-Ray Computed
9.
Br J Radiol ; 95(1129): 20210699, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34538091

ABSTRACT

Dual-energy CT (DECT) imaging is a technique that extends the capabilities of CT beyond that of established densitometric evaluations. CT pulmonary angiography (CTPA) performed with dual-energy technique benefits from both the availability of low kVp CT data and also the concurrent ability to quantify iodine enhancement in the lung parenchyma. Parenchymal enhancement, presented as pulmonary perfused blood volume maps, may be considered as a surrogate of pulmonary perfusion. These distinct capabilities have led to new opportunities in the evaluation of pulmonary vascular diseases. Dual-energy CTPA offers the potential for improvements in pulmonary emboli detection, diagnostic confidence, and most notably severity stratification. Furthermore, the appreciated insights of pulmonary vascular physiology conferred by DECT have resulted in increased use for the assessment of pulmonary hypertension, with particular utility in the subset of patients with chronic thromboembolic pulmonary hypertension. With the increasing availability of dual energy-capable CT systems, dual energy CTPA is becoming a standard-of-care protocol for CTPA acquisition in acute PE. Furthermore, qualitative and quantitative pulmonary vascular DECT data heralds promise for the technique as a "one-stop shop" for diagnosis and surveillance assessment in patients with pulmonary hypertension. This review explores the current application, clinical value, and limitations of DECT imaging in acute and chronic pulmonary vascular conditions. It should be noted that certain manufacturers and investigators prefer alternative terms, such as spectral or multi-energy CT imaging. In this review, the term dual energy is utilised, although readers can consider these terms synonymous for purposes of the principles explained.


Subject(s)
Computed Tomography Angiography/methods , Lung Diseases/diagnostic imaging , Vascular Diseases/diagnostic imaging , Computed Tomography Angiography/instrumentation , Humans , Hypertension, Pulmonary/diagnostic imaging , Pulmonary Circulation , Pulmonary Embolism/diagnostic imaging
10.
Med Phys ; 48(2): 640-647, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33283284

ABSTRACT

PURPOSE: Assessment of image quality directly in clinical image data is an important quality control objective as phantom-based testing does not fully represent image quality across patient variation. Computer algorithms for automatically measuring noise in clinical computed tomography (CT) images have been introduced, but the accuracy of these algorithms is unclear. This work benchmarks the accuracy of the global noise (GN) algorithm for automatic noise measurement in contrast-enhanced abdomen CT exams in comparison to precise reference noise measurements. The GN algorithm was further optimized compared to the previous report in the literature. METHODS: Reference values of noise were established in a public image dataset of 82 contrast-enhanced abdomen CT exams. The reference noise values were obtained by manual regions-of-interest measurements of pixel standard deviation in the liver parenchyma according to an instruction protocol. Noise measurements taken by six observers were averaged together to improve reference noise statistical precision. The GN algorithm was used to automatically measure noise in each image set. The accuracy of the GN algorithm was determined in terms of RMS error compared to reference noise. The GN algorithm was optimized by conducting 1000 trials with random algorithm parameter values. The trial with the lowest RMS error was used to select optimum algorithm parameters. RESULTS: The range of noise across CT image sets was 8.8-28.8 HU. Reference noise measurements were made with a precision of ±0.78 HU (95% confidence interval). The RMS error of automatic noise measurement was 0.93 HU (0.77-1.19 HU 95% confidence interval). The automatic noise measurements were equally accurate across image sets of varying noise magnitude. Optimum GN algorithm parameter values were: a kernel size of 7 pixels, and soft tissue lower and upper thresholds of 0 and 170 HU, respectively. CONCLUSIONS: The performance of automatic noise measurement was benchmarked in a large clinical CT dataset. The study provides a framework for thorough validation of automatic clinical image quality measurement methods. The GN algorithm was optimized and validated for automatic measurement of soft-tissue noise in abdomen CT exams.


Subject(s)
Benchmarking , Image Processing, Computer-Assisted , Algorithms , Humans , Phantoms, Imaging , Tomography, X-Ray Computed
11.
Med Phys ; 48(1): 300-312, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33216978

ABSTRACT

PURPOSE: Material differentiation has been made possible using dual-energy computed tomography (DECT), in which the unique, energy-dependent attenuating characteristics of materials can provide new diagnostic information. One promising application is the clinical integration of biodegradable polymers as temporary implantable medical devices impregnated with high-atomic number (high-Z) materials. The purpose of this study was to explore the incorporation of high atomic number (high-Z) contrast materials in a bioresorbable inferior vena cava filter for advanced CT-based monitoring of its location and differentiating from surrounding materials. MATERIALS AND METHODS: Imaging optimization and calibration studies were performed using a body phantom. The dual-energy CT (DECT) ratios for iron, zirconium, barium, gadolinium, ytterbium, tantalum, tungsten, gold, and bismuth were generated for peak kilovoltage combinations of 80/150Sn, 90/150Sn, and 100/150Sn kVp in dual-source CT via linear regression of the CT numbers at low and high energies. A secondary calibration of the material map to the nominal material concentration was generated to correct for use of materials other than iodine. CT number was calibrated to the material concentration based on single-energy CT (SECT) with additional filtration (150Sn kVp). These quantification methods were applied to monitoring of biodegradable inferior vena cava filters (IVCFs) made of braided poly(p-dioxanone) sutures infused with ultrasmall bismuth nanoparticles (BiNPs) implanted in an adult domestic pig. RESULTS: Qualitative material differentiation was optimal for high-Z (>73) contrast agents in DECT. However, quantification became nonlinear and inaccurate as the K-edge of the material increased. Using the high-energy (150Sn kVp) data component as a SECT scan, the linearity of quantification curves was maintained with lower limits of detection than with DECT. Among the materials tested, bismuth had optimal differentiation from iodine in DECT while maintaining increased contrast in high-energy SECT for quantification (11.5% error). Coating the IVCF with BiNPs resulted in markedly greater radiopacity (maximum CT number, 2028 HU) than that of an uncoated IVCF (maximum CT number, 127 HU). Using DECT imaging and processing, the BiNP-IVCF could be clearly differentiated from iodine contrast injected into the inferior vena cava of the pig. CONCLUSIONS: These findings may improve widespread integration of medical devices incorporated with high-Z materials into the clinic, where technical success, possible complications, and device integrity can be assessed intraoperatively and postoperatively via DECT imaging.


Subject(s)
Iodine , Nanoparticles , Animals , Calibration , Phantoms, Imaging , Swine , Tomography, X-Ray Computed
12.
Biomater Sci ; 8(14): 3966-3978, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32558854

ABSTRACT

Absorbable inferior vena cava filters (IVCFs) offer a promising alternative to metallic retrievable filters in providing protection against pulmonary embolism (PE) for patients contraindicated for anticoagulant therapy. However, because absorbable filters are not radiopaque, monitoring of the filter using conventional X-ray imaging modalities (e.g. plain film radiographs, computed tomography [CT] and fluoroscopy) during deployment and follow-up is not possible and represents a potential obstacle to widespread clinical integration of the device. Here, we demonstrate that gold nanoparticles (AuNPs) infused into biodegradable filters made up of poly-p-dioxanone (PPDO) may improve device radiopacity without untoward effects on device efficacy and safety, as assessed in swine models for 12 weeks. The absorbable AuNP-infused filters demonstrated significantly improved visualization using CT without affecting tensile strength, in vitro degradation, in vivo resorption, or thrombus-capturing efficacy, as compared to similar non-AuNPs infused resorbable IVCFs. This study presents a significant advancement to the development of imaging enhancers for absorbable IVCFs.


Subject(s)
Metal Nanoparticles , Pulmonary Embolism , Vena Cava Filters , Animals , Gold , Humans , Swine , Tensile Strength
13.
Cells ; 9(5)2020 05 22.
Article in English | MEDLINE | ID: mdl-32456061

ABSTRACT

We illuminate a possible explanatory pathophysiologic mechanism for retinal cellular neuropathy by means of a novel diagnostic method using ophthalmoscopic imaging and a molecular imaging agent targeted to fast axonal transport. The retinal neuropathies are a group of diseases with damage to retinal neural elements. Retinopathies lead to blindness but are typically diagnosed late, when substantial neuronal loss and vision loss have already occurred. We devised a fluorescent imaging agent based on the non-toxic C fragment of tetanus toxin (TTc), which is taken up and transported in neurons using the highly conserved fast axonal transport mechanism. TTc serves as an imaging biomarker for normal axonal transport and demonstrates impairment of axonal transport early in the course of an N-methyl-D-aspartic acid (NMDA)-induced excitotoxic retinopathy model in rats. Transport-related imaging findings were dramatically different between normal and retinopathic eyes prior to presumed neuronal cell death. This proof-of-concept study provides justification for future clinical translation.


Subject(s)
Axonal Transport , Retina/metabolism , Retina/pathology , Retinal Diseases/metabolism , Retinal Diseases/pathology , Animals , Axons/metabolism , Biomarkers/metabolism , Disease Models, Animal , Endocytosis , Male , N-Methylaspartate/metabolism , Rats, Inbred BN , Retinal Ganglion Cells/metabolism , Synapses/pathology , Tetanus Toxin/metabolism
14.
Med Phys ; 47(8): 3752-3771, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32453879

ABSTRACT

Computed tomography (CT) technology has rapidly evolved since its introduction in the 1970s. It is a highly important diagnostic tool for clinicians as demonstrated by the significant increase in utilization over several decades. However, much of the effort to develop and advance CT applications has been focused on improving visual sensitivity and reducing radiation dose. In comparison to these areas, improvements in quantitative CT have lagged behind. While this could be a consequence of the technological limitations of conventional CT, advanced dual-energy CT (DECT) and photon-counting detector CT (PCD-CT) offer new opportunities for quantitation. Routine use of DECT is becoming more widely available and PCD-CT is rapidly developing. This review covers efforts to address an unmet need for improved quantitative imaging to better characterize disease, identify biomarkers, and evaluate therapeutic response, with an emphasis on multi-energy CT applications. The review will primarily discuss applications that have utilized quantitative metrics using both conventional and DECT, such as bone mineral density measurement, evaluation of renal lesions, and diagnosis of fatty liver disease. Other topics that will be discussed include efforts to improve quantitative CT volumetry and radiomics. Finally, we will address the use of quantitative CT to enhance image-guided techniques for surgery, radiotherapy and interventions and provide unique opportunities for development of new contrast agents.


Subject(s)
Photons , Tomography, X-Ray Computed , Tomography
15.
Abdom Radiol (NY) ; 45(4): 1100-1109, 2020 04.
Article in English | MEDLINE | ID: mdl-32052130

ABSTRACT

PURPOSE: To evaluate the quantitative attenuation and reliability of virtual non-contrast (VNC) images of the abdomen acquired from multiphasic scans with a dual-energy computed tomography (DECT) system and compare it with that of true non-enhanced images (TNC) on second- (Flash) and third- (Force) generation DECT scanners. METHODS: This retrospective study was approved by the institutional review board and included 123 patients with pancreatic cancer who had undergone routine clinical multiphasic DECT examinations at our institution using Flash and Force scanners between March and August 2017. VNC images of the abdomen were reconstructed from late arterial phase images. For every patient, regions-of-interest were defined in the aorta, fluid-containing structures (gallbladder, pleural effusion, and renal cysts > 10 mm), paravertebral muscles, subcutaneous fat, spleen, pancreas, renal cortex, and liver (eight locations) on TNC and VNC images. The mean attenuation of VNC was compared with TNC by organ for each CT scanner using an equivalence test and the Bland-Altman plot. The mean attenuations for TNC or VNC were compared between the Force and Flash CT scanners using a two-sample t test. RESULTS: The VNC attenuation of organs on the Force scanner was lower than was that on the Flash, and the mean attenuation difference in different organs on the Force was closer to 0. The estimated means of TNC and VNC were equivalent for an equivalence margin of 10 on the Force scanner. CONCLUSION: VNC images in DECT are a promising alternative to TNC images. In clinical scenarios in which non-enhanced CT images are required but are not available for accurate diagnosis, VNC images can potentially serve as an alternative to TNC images without the radiation exposure risks.


Subject(s)
Abdomen/diagnostic imaging , Pancreatic Neoplasms/diagnostic imaging , Radiography, Dual-Energy Scanned Projection/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Radiographic Image Interpretation, Computer-Assisted , Reproducibility of Results , Retrospective Studies
16.
Radiology ; 292(2): 414-419, 2019 08.
Article in English | MEDLINE | ID: mdl-31237496

ABSTRACT

Background Assessments of the quantitative limitations among the six commercially available dual-energy (DE) CT acquisition schemes used by major CT manufacturers could aid researchers looking to use iodine quantification as an imaging biomarker. Purpose To determine the limits of detection and quantification of DE CT in phantoms by comparing rapid peak kilovoltage switching, dual-source, split-filter, and dual-layer detector systems in six different scanners. Materials and Methods Seven 50-mL iohexol solutions were used, with concentrations of 0.03-2.0 mg iodine per milliliter. The solutions and water sample were scanned five times each in two phantoms (small, 20-cm diameter; large, 30 × 40-cm diameter) with six DE CT systems and a total of 10 peak kilovoltage settings or combinations. Iodine maps were created, and the mean iodine signal in each sample was recorded. The limit of blank (LOB) was defined as the upper limit of the 95% confidence interval of the water sample. The limit of detection (LOD) was defined as the concentration with a 95% chance of having a signal above the LOB. The limit of quantification (LOQ) was defined as the lowest concentration where the coefficient of variation was less than 20%. Results The LOD range was 0.021-0.26 mg/mL in the small phantom and 0.026-0.55 mg/mL in the large phantom. The LOQ range was 0.07-0.50 mg/mL in the small phantom and 0.20-1.0 mg/mL in the large phantom. The dual-source and rapid peak kilovoltage switching systems had the lowest LODs, and the dual-layer detector systems had the highest LODs. Conclusion The iodine limit of detection using dual-energy CT systems varied with scanner and phantom size, but all systems depicted iodine in the small and large phantoms at or below 0.3 and 0.5 mg/mL, respectively, and enabled quantification at concentrations of 0.5 and 1.0 mg/mL, respectively. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Hindman in this issue.


Subject(s)
Contrast Media , Iodine , Radiographic Image Enhancement/methods , Radiography, Dual-Energy Scanned Projection/methods , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Reproducibility of Results
17.
Med Phys ; 2018 Jul 14.
Article in English | MEDLINE | ID: mdl-30007075

ABSTRACT

PURPOSE: Magnetic resonance imaging (MRI) provides noninvasive evaluation of patient's anatomy without using ionizing radiation. Due to this and the high soft-tissue contrast, MRI use has increased and has potential for use in longitudinal studies where changes in patients' anatomy or tumors at different time points are compared. Deformable image registration can be useful for these studies. Here, we describe two datasets that can be used to evaluate the registration accuracy of systems for MR images, as it cannot be assumed to be the same as that measured on CT images. ACQUISITION AND VALIDATION METHODS: Two sets of images were created to test registration accuracy. (a) A porcine phantom was created by placing ten 0.35-mm gold markers into porcine meat. The porcine phantom was immobilized in a plastic container with movable dividers. T1-weighted, T2-weighted, and CT images were acquired with the porcine phantom compressed in four different ways. The markers were not visible on the MR images, due to the selected voxel size, so they did not interfere with the measured registration accuracy, while the markers were visible on the CT images and were used to identify the known deformation between positions. (b) Synthetic images were created using 28 head and neck squamous cell carcinoma patients who had MR scans pre-, mid-, and postradiotherapy treatment. An inter- and intrapatient variation model was created using these patient scans. Four synthetic pretreatment images were created using the interpatient model, and four synthetic post-treatment images were created for each of the pretreatment images using the intrapatient model. DATA FORMAT AND USAGE NOTES: The T1-weighted, T2-weighted, and CT scans of the porcine phantom in the four positions are provided. Four T1-weighted synthetic pretreatment images each with four synthetic post-treatment images, and four T2-weighted synthetic pretreatment images each with four synthetic post-treatment images are provided. Additionally, the applied deformation vector fields to generate the synthetic post-treatment images are provided. The data are available on TCIA under the collection MRI-DIR. POTENTIAL APPLICATIONS: The proposed database provides two sets of images (one acquired and one computer generated) for use in evaluating deformable image registration accuracy. T1- and T2-weighted images are available for each technique as the different image contrast in the two types of images may impact the registration accuracy.

18.
Med Phys ; 45(4): 1444-1458, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29446082

ABSTRACT

PURPOSE: A prototype QC phantom system and analysis process were developed to characterize the spectral capabilities of a fast kV-switching dual-energy computed tomography (DECT) scanner. This work addresses the current lack of quantitative oversight for this technology, with the goal of identifying relevant scan parameters and test metrics instrumental to the development of a dual-energy quality control (DEQC). METHODS: A prototype elliptical phantom (effective diameter: 35 cm) was designed with multiple material inserts for DECT imaging. Inserts included tissue equivalent and material rods (including iodine and calcium at varying concentrations). The phantom was scanned on a fast kV-switching DECT system using 16 dual-energy acquisitions (CTDIvol range: 10.3-62 mGy) with varying pitch, rotation time, and tube current. The circular head phantom (22 cm diameter) was scanned using a similar protocol (12 acquisitions; CTDIvol range: 36.7-132.6 mGy). All acquisitions were reconstructed at 50, 70, 110, and 140 keV and using a water-iodine material basis pair. The images were evaluated for iodine quantification accuracy, stability of monoenergetic reconstruction CT number, noise, and positional constancy. Variance component analysis was used to identify technique parameters that drove deviations in test metrics. Variances were compared to thresholds derived from manufacturer tolerances to determine technique parameters that had a nominally significant effect on test metrics. RESULTS: Iodine quantification error was largely unaffected by any of the technique parameters investigated. Monoenergetic HU stability was found to be affected by mAs, with a threshold under which spectral separation was unsuccessful, diminishing the utility of DECT imaging. Noise was found to be affected by CTDIvol in the DEQC body phantom, and CTDIvol and mA in the DEQC head phantom. Positional constancy was found to be affected by mAs in the DEQC body phantom and mA in the DEQC head phantom. CONCLUSION: A streamlined scan protocol was developed to further investigate the effects of CTDIvol and rotation time while limiting data collection to the DEQC body phantom. Further data collection will be pursued to determine baseline values and statistically based failure thresholds for the validation of long-term DECT scanner performance.


Subject(s)
Tomography, X-Ray Computed/instrumentation , Phantoms, Imaging , Quality Control , Signal-To-Noise Ratio , Time Factors
19.
Article in English | MEDLINE | ID: mdl-31406393

ABSTRACT

Radiopaque resorbable inferior vena cava filter (IVCF) were developed to offer a less expensive alternative to assessing filter integrity in preventing pulmonary embolism for the recommended prophylactic period and then simply vanishes without intervention. In this study, we determined the efficacy of gold nanoparticle (AuNP)-infused poly-p-dioxanone (PPDO) as an IVCF in a swine model. Infusion into PPDO loaded 1.14±0.08 % AuNP by weight as determined by elemental analysis. The infusion did not alter PPDO's mechanical strength nor crystallinity (Kruskal-Wallis one-way ANOVA, p<0.05). There was no cytotoxicity observed (one-way ANOVA, p<0.05) when tested against RF24 and MRC5 cells. Gold content in PPDO was maintained at ~2000 ppm during the 6-week incubation in PBS at 37°C. As a proof-of-concept, two pigs were deployed with IVCF, one with AuNP-PPDO and the other without coating. Results show that the stent ring of AuNP-PPDO was highly visible even in the presence of iodine-based contrast agent and after clot introduction, but not of the uncoated IVCF. Autopsy at two weeks post-implantation showed AuNP-PPDO filter was endothelialized onto the IVC wall, and no sign of filter migration was observed. The induced clot was also still trapped within the AuNP-PPDO IVCF. As a conclusion, we successfully fabricated AuNP-infused PPDO IVCF that is radiopaque, has robust mechanical strength, biocompatible, and can be imaged effectively in vivo. This suggests the efficacy of this novel, radiopaque, absorbable IVCF for monitoring its position and integrity over time, thus increasing the safety and efficacy of deep vein thrombosis treatment.

20.
Radiology ; 287(1): 224-234, 2018 04.
Article in English | MEDLINE | ID: mdl-29185902

ABSTRACT

Purpose To determine the accuracy of dual-energy computed tomographic (CT) quantitation in a phantom system comparing fast kilovolt peak-switching, dual-source, split-filter, sequential-scanning, and dual-layer detector systems. Materials and Methods A large elliptical phantom containing iodine (2, 5, and 15 mg/mL), simulated contrast material-enhanced blood, and soft-tissue inserts with known elemental compositions was scanned three to five times with seven dual-energy CT systems and a total of 10 kilovolt peak settings. Monochromatic images (50, 70, and 140 keV) and iodine concentration images were created. Mean iodine concentration and monochromatic attenuation for each insert and reconstruction energy level were recorded. Measurement bias was assessed by using the sum of the mean signed errors measured across relevant inserts for each monochromatic energy level and iodine concentration. Iodine and monochromatic errors were assessed by using the root sum of the squared error of all measurements. Results At least one acquisition paradigm per scanner had iodine biases (range, -2.6 to 1.5 mg/mL) with significant differences from zero. There were no significant differences in iodine error (range, 0.44-1.70 mg/mL) among the top five acquisition paradigms (one fast kilovolt peak switching, three dual source, and one sequential scanning). Monochromatic bias was smallest for 70 keV (-12.7 to 15.8 HU) and largest for 50 keV (-80.6 to 35.2 HU). There were no significant differences in monochromatic error (range, 11.4-52.0 HU) among the top three acquisition paradigms (one dual source and two fast kilovolt peak switching). The lowest accuracy for both measures was with a split-filter system. Conclusion Iodine and monochromatic accuracy varies among systems, but dual-source and fast kilovolt-switching generally provided the most accurate results in a large phantom. © RSNA, 2017 Online supplemental material is available for this article.


Subject(s)
Iodine , Phantoms, Imaging , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted , Radiography, Dual-Energy Scanned Projection/methods , Tomography, X-Ray Computed/methods , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...