Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
2.
Nanotoxicology ; 17(4): 338-371, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37300873

ABSTRACT

This study collects toxicity data from animal inhalation studies of some nanomaterials and their bulk and ionic counterparts. To allow potential grouping and interpretations, we retrieved the primary physicochemical and exposure data to the extent possible for each of the materials. Reviewed materials are compounds (mainly elements, oxides and salts) of carbon (carbon black, carbon nanotubes, and graphene), silver, cerium, cobalt, copper, iron, nickel, silicium (amorphous silica and quartz), titanium (titanium dioxide), and zinc (chemical symbols: Ag, C, Ce, Co, Cu, Fe, Ni, Si, Ti, TiO2, and Zn). Collected endpoints are: a) pulmonary inflammation, measured as neutrophils in bronchoalveolar lavage (BAL) fluid at 0-24 hours after last exposure; and b) genotoxicity/carcinogenicity. We present the dose descriptors no-observed-adverse-effect concentrations (NOAECs) and lowest-observed-adverse-effect concentrations (LOAECs) for 88 nanomaterial investigations in data-library and graph formats. We also calculate 'the value where 25% of exposed animals develop tumors' (T25) for carcinogenicity studies. We describe how the data may be used for hazard assessment of the materials using carbon black as an example. The collected data also enable hazard comparison between different materials. An important observation for poorly soluble particles is that the NOAEC for neutrophil numbers in general lies around 1 to 2 mg/m3. We further discuss why some materials' dose descriptors deviate from this level, likely reflecting the effects of the ionic form and effects of the fiber-shape. Finally, we discuss that long-term studies, in general, provide the lowest dose descriptors, and dose descriptors are positively correlated with particle size for near-spherical materials.


Subject(s)
Nanostructures , Nanotubes, Carbon , Pneumonia , Animals , Lung , Soot/toxicity , Nanostructures/toxicity , Bronchoalveolar Lavage Fluid , Particle Size , Inhalation Exposure
3.
Environ Toxicol Pharmacol ; 98: 104074, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36724834

ABSTRACT

Tungsten is used in several applications and human exposure may occur. To assess its pulmonary toxicity, we exposed male mice to nose-only inhalation of tungsten particles at 9, 23 or 132 mg/m3 (Low, Mid and High exposure) (45 min/day, 5 days/week for 2 weeks). Increased genotoxicity (assessed by comet assay) was seen in bronchoalveolar (BAL) fluid cells at Low and High exposure. We measured acellular ROS production, and cannot exclude that ROS contributed to the observed genotoxicity. We saw no effects on body weight gain, pulmonary inflammation, lactate dehydrogenase or protein in BAL fluid, pathology of liver or kidney, or on sperm counts. In conclusion, tungsten showed non-dose dependent genotoxicity in the absence of inflammation and therefore interpreted to be primary genotoxicity. Based on genotoxicity, a Lowest Observed Adverse Effect Concentration (LOAEC) could be set at 9 mg/m3. It was not possible to establish a No Adverse Effect Concentration (NOAEC).


Subject(s)
Semen , Tungsten , Humans , Mice , Male , Animals , Tungsten/metabolism , Tungsten/pharmacology , Reactive Oxygen Species/metabolism , Semen/metabolism , DNA Damage , Inflammation/pathology , Inhalation Exposure/adverse effects , Bronchoalveolar Lavage Fluid , Lung
4.
Drug Chem Toxicol ; 45(5): 2388-2397, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34455878

ABSTRACT

Some implantable medical devices contain silver. We aimed to assess at what amount implanted silver becomes toxic. Silver was elevated in bodily fluids and tissues surrounding silver-containing implants. Silver released from implants also distributes to blood and other tissues; there is evidence to suggest silver can pass the blood-brain-barrier. Silver can be deposited as nano-sized particles in various tissues. Such particles, in addition to silver, often contain other elements too, e.g., selenium and sulfur. Silver released from implants seems to stay in the body for long periods (years). Reported excretion pathways following implantation are urinary and fecal ones. Reported toxicological effects were virtually all local reactions surrounding the implants. Argyria is a blue-gray discoloration of the skin due to deposited silver granules. Localized argyria has been described after the implantation of acupuncture needles and silver-coated prostheses, although the presence of silver was tested only for and shown in the former. Other toxicological effects include local tissue reactivity and examples of neurotoxic and vascular effects. We did not include genotoxicity studies in the present publication as we recently evaluated silver to be genotoxic. Carcinogenicity studies were absent. We conclude that local toxicity of implanted silver can be foreseen in some situations.


Subject(s)
Argyria , Selenium , Humans , Prostheses and Implants , Silver/toxicity , Skin
5.
Toxicol Appl Pharmacol ; 410: 115343, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33227293

ABSTRACT

Hazard evaluation of graphene-based materials (GBM) is still in its early stage and it is slowed by their large diversity in the physicochemical properties. This study explores transcriptomic differences in the lung and liver after pulmonary exposure to two GBM with similar physical properties, but different surface chemistry. Female C57BL/6 mice were exposed by a single intratracheal instillation of 0, 18, 54 or 162 µg/mouse of graphene oxide (GO) or reduced graphene oxide (rGO). Pulmonary and hepatic changes in the transcriptome were profiled to identify commonly and uniquely perturbed functions and pathways by GO and rGO. These changes were then related to previously analyzed toxicity endpoints. GO exposure induced more differentially expressed genes, affected more functions, and perturbed more pathways compared to rGO, both in lung and liver tissues. The largest differences were observed for the pulmonary innate immune response and acute phase response, and for hepatic lipid homeostasis, which were strongly induced after GO exposure. These changes collective indicate a potential for atherosclerotic changes after GO, but not rGO exposure. As GO and rGO are physically similar, the higher level of hydroxyl groups on the surface of GO is likely the main reason for the observed differences. GO exposure also uniquely induced changes in the transcriptome related to fibrosis, whereas both GBM induced similar changes related to Reactive Oxygen Species production and genotoxicity. The differences in transcriptomic responses between the two GBM types can be used to understand how physicochemical properties influence biological responses and enable hazard evaluation of GBM and hazard ranking of GO and rGO, both in relation to each other and to other nanomaterials.


Subject(s)
Graphite/toxicity , Liver/drug effects , Lung/drug effects , Respiratory Tract Absorption/drug effects , Transcriptome/drug effects , Animals , Female , Graphite/administration & dosage , Liver/pathology , Liver/physiology , Lung/pathology , Lung/physiology , Mice , Mice, Inbred C57BL , Random Allocation , Respiratory Tract Absorption/physiology , Transcriptome/physiology
6.
Nanotoxicology ; 15(10): 1295-1311, 2021 12.
Article in English | MEDLINE | ID: mdl-35015612

ABSTRACT

With ever-increasing production and use of nanoparticles (NPs), there is a necessity to evaluate the probability of consequential adverse effects in individuals exposed to these particles. It is now understood that a proportion of NPs can translocate from primary sites of exposure to a range of secondary organs, with the liver, kidneys and spleen being some of the most important. In this study, we carried out a comprehensive toxicological profiling (inflammation, changes in serum biochemistry, oxidative stress, acute phase response and histopathology) of Ag NP induced adverse effects in the three organs of interest following acute exposure of the materials at identical doses via intravenous (IV), intratracheal (IT) instillation and oral administration. The data clearly demonstrated that bioaccumulation and toxicity of the particles were most significant following the IV route of exposure, followed by IT. However, oral exposure to the NPs did not result in any changes that could be interpreted as toxicity in any of the organs of interest within the confines of this investigation. The finding of this study clearly indicates the importance of the route of exposure in secondary organ hazard assessment for NPs. Finally, we identify Connexin 32 (Cx32) as a novel biomarker of NP-mediated hepatic damage which is quantifiable both (in vitro) and in vivo following exposure of physiologically relevant doses.


Subject(s)
Metal Nanoparticles , Nanoparticles , Humans , Injections, Intravenous , Liver , Metal Nanoparticles/toxicity , Nanoparticles/toxicity , Oxidative Stress , Silver/metabolism
7.
Nanotoxicology ; 15(1): 96-113, 2021 02.
Article in English | MEDLINE | ID: mdl-33176111

ABSTRACT

Materials can be modified for improved functionality. Our aim was to test whether pulmonary toxicity of silica nanomaterials is increased by the introduction of: a) porosity; and b) surface doping with CuO; and whether c) these modifications act synergistically. Mice were exposed by intratracheal instillation and for some doses also oropharyngeal aspiration to: 1) solid silica 100 nm; 2) porous silica 100 nm; 3) porous silica 100 nm with CuO doping; 4) solid silica 300 nm; 5) porous silica 300 nm; 6) solid silica 300 nm with CuO doping; 7) porous silica 300 nm with CuO doping; 8) CuO nanoparticles 9.8 nm; or 9) carbon black Printex 90 as benchmark. Based on a pilot study, dose levels were between 0.5 and 162 µg/mouse (0.2 and 8.1 mg/kg bw). Endpoints included pulmonary inflammation (neutrophil numbers in bronchoalveolar fluid), acute phase response, histopathology, and genotoxicity assessed by the comet assay, micronucleus test, and the gamma-H2AX assay. The porous silica materials induced greater pulmonary inflammation than their solid counterparts. A similar pattern was seen for acute phase response induction and histologic changes. This could be explained by a higher specific surface area per mass unit for the most toxic particles. CuO doping further increased the acute phase response normalized according to the deposited surface area. We identified no consistent evidence of synergism between surface area and CuO doping. In conclusion, porosity and CuO doping each increased the toxicity of silica nanomaterials and there was no indication of synergy when the modifications co-occurred.


Subject(s)
Copper/toxicity , Nanoparticles/toxicity , Pneumonia/chemically induced , Silicon Dioxide/chemistry , Silicon Dioxide/toxicity , Acute-Phase Reaction , Animals , Comet Assay , Copper/chemistry , DNA Damage , Mice , Micronucleus Tests , Nanoparticles/chemistry , Nanostructures , Pilot Projects , Pneumonia/pathology , Porosity
8.
Part Fibre Toxicol ; 17(1): 32, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32677973

ABSTRACT

In response to the Letter to the Editor by Kevin Driscoll et al., we certainly agree that particle clearance halftimes are increased with increasing lung burden in rats, hamsters and mice, whereas complete inhibition of particle clearance has only been observed in rats, and only at high particle concentrations (50 mg/m3). Where we disagree with Kevin Driscoll and colleagues, is on the implications of the increased clearance halftimes observed at higher lung burden. We argue that it does not hamper the extrapolations from relatively high dose levels to lower dose levels.Furthermore, we highlight, again, the challenges of detecting particle-induced lung cancer in epidemiological studies where occupational, particle-induced lung cancer has to be detected on top of the background lung cancer incidence. Almost all available epidemiological studies on carbon black and titanium dioxide suffer from a number of limitations, including lack of control for smoking, the use of background population cancer rates as reference in the US studies, lack of information regarding particle size of the exposure, and incomplete follow-up for cause of death of the study population.


Subject(s)
Lung Neoplasms , Lung , Animals , Cricetinae , Humans , Mice , Particle Size , Rats , Soot , Titanium
9.
Regul Toxicol Pharmacol ; 115: 104690, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32474071

ABSTRACT

Silver is used in a wide range of products, and during their production and use, humans may be exposed through inhalation. Therefore, it is critical to know the concentration levels at which adverse effects may occur. In rodents, inhalation of silver nanoparticles has resulted in increased silver in the lungs, lymph nodes, liver, kidney, spleen, ovaries, and testes. Reported excretion pathways of pulmonary silver are urinary and faecal excretion. Acute effects in humans of the inhalation of silver include lung failure that involved increased heart rate and decreased arterial blood oxygen pressure. Argyria-a blue-grey discoloration of skin due to deposited silver-was observed after pulmonary exposure in 3 individuals; however, the presence of silver in the discolorations was not tested. Argyria after inhalation seems to be less likely than after oral or dermal exposure. Repeated inhalation findings in rodents have shown effects on lung function, pulmonary inflammation, bile duct hyperplasia, and genotoxicity. In our evaluation, the range of NOAEC values was 0.11-0.75 mg/m3. Silver in the ionic form is likely more toxic than in the nanoparticle form but that difference could reflect their different biokinetics. However, silver nanoparticles and ions have a similar pattern of toxicity, probably reflecting that the effect of silver nanoparticles is primarily mediated by released ions. Concerning genotoxicity studies, we evaluated silver to be positive based on studies in mammalian cells in vitro and in vivo when considering various exposure routes. Carcinogenicity data are absent; therefore, no conclusion can be provided on this endpoint.


Subject(s)
Dust , Gases/toxicity , Metal Nanoparticles/toxicity , Silver/toxicity , Administration, Inhalation , Animals , Humans , Inhalation Exposure , Lung/drug effects , Metal Nanoparticles/analysis , Mutagenicity Tests , Silver/blood , Silver/pharmacokinetics
10.
Environ Toxicol Pharmacol ; 74: 103303, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31794919

ABSTRACT

Exposure to metal oxide nanomaterials potentially occurs at the workplace. We investigated the toxicity of two Fe-oxides: Fe2O3 nanoparticles and nanorods; and three MFe2O4 spinels: NiZnFe4O8, ZnFe2O4, and NiFe2O4 nanoparticles. Mice were dosed 14, 43 or 128 µg by intratracheal instillation. Recovery periods were 1, 3, or 28 days. Inflammation - neutrophil influx into bronchoalveolar lavage (BAL) fluid - occurred for Fe2O3 rods (1 day), ZnFe2O4 (1, 3 days), NiFe2O4 (1, 3, 28 days), Fe2O3 (28 days) and NiZnFe4O8 (28 days). Conversion of mass-dose into specific surface-area-dose showed that inflammation correlated with deposited surface area and consequently, all these nanomaterials belong to the so-called low-solubility, low-toxicity class. Increased levels of DNA strand breaks were observed for both Fe2O3 particles and rods, in BAL cells three days post-exposure. To our knowledge, this is, besides magnetite (Fe3O4), the first study of the pulmonary toxicity of MFe2O4 spinel nanomaterials.


Subject(s)
Lung/drug effects , Metal Nanoparticles/toxicity , Animals , Bronchoalveolar Lavage Fluid , DNA Damage , Mice
11.
Part Fibre Toxicol ; 16(1): 44, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31752898

ABSTRACT

Recently, Borm and Driscoll published a commentary discussing grouping of Poorly Soluble particles of Low Toxicity (PSLTs) and the use of rats as an animal model for human hazard assessment of PSLTs (Particle and Fibre Toxicology (2019) 16(1):11). The commentary was based on the scientific opinion of several international experts on these topics. The general conclusion from the authors was a cautious approach towards using chronic inhalation studies in rats for human hazard assessment of PSLTs. This was based on evidence of inhibition of particle clearance leading to overload in the rats after high dose exposure, and a suggested over reactivity of rat lung cancer responses compared to human risk.As a response to the commentary, we here discuss evidence from the scientific literature showing that a) diesel exhaust particles, carbon black nanoparticles and TiO2 nanoparticles have similar carcinogenic potential in rats, and induce lung cancer at air concentrations below the air concentrations that inhibit particle clearance in rats, and b) chronic inhalation studies of diesel exhaust particles are less sensitive than epidemiological studies, leading to higher risk estimates for lung cancer. Thus, evidence suggests that the chronic inhalation study in rats can be used for assessing lung cancer risk insoluble nanomaterials.


Subject(s)
Lung Neoplasms , Lung , Administration, Inhalation , Animals , Humans , Rats , Soot , Vehicle Emissions
12.
Nanotoxicology ; 13(9): 1275-1292, 2019 11.
Article in English | MEDLINE | ID: mdl-31441356

ABSTRACT

Inhalation of nanosized zinc oxide (ZnO) induces metal fume fever and systemic acute phase response in humans. Acute phase response activation is a cardiovascular risk factor; we investigated whether pulmonary exposure of mice can be used to assess ZnO-induced acute phase response as well as inflammation and genotoxicity. Uncoated (NM-110) and triethoxycaprylylsilane-coated (NM-111) ZnO nanoparticles were intratracheally instilled once at 0.2, 0.7 or 2 µg/mouse (11, 33 and 100 µg/kg body weight). Serum amyloid A3 mRNA level in lung tissue, bronchoalveolar lavage (BAL) fluid cellularity, and levels of DNA strand breaks in BAL fluid cells, lung and liver tissue were assessed 1, 3 and 28 days post-exposure. Global transcription patterns were assessed in lung tissue using microarrays. The acute-phase response serum amyloid A3 mRNA levels were increased on day 1; for uncoated ZnO nanoparticles at the highest dose and for coated ZnO nanoparticles at medium and highest dose. Neutrophils were increased in BAL fluid only after exposure to coated ZnO nanoparticles. Genotoxicity was observed only in single dose groups, with no dose-response relationship. Most changes in global transcriptional response were observed after exposure to uncoated ZnO nanoparticles and involved cell cycle G2 to M phase DNA damage checkpoint regulation. Although, uncoated and coated ZnO nanoparticles qualitatively exerted similar effects, observed differences are likely explained by differences in solubility kinetics. The finding of serum amyloid A3 induction at low exposure suggests that mouse models can be used to assess the nanoparticle-mediated induction of acute phase responses in humans.


Subject(s)
Acute-Phase Reaction , Inflammation/chemically induced , Lung/drug effects , Nanoparticles/toxicity , Zinc Oxide/toxicity , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid/cytology , DNA Damage , Dose-Response Relationship, Drug , Humans , Inflammation/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophils , RNA, Messenger/genetics , Trachea/metabolism
13.
Basic Clin Pharmacol Toxicol ; 124(2): 211-227, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30168672

ABSTRACT

Multi-walled carbon nanotubes (MWCNT) are widely used nanomaterials that cause pulmonary toxicity upon inhalation. The physicochemical properties of MWCNT vary greatly, which makes general safety evaluation challenging to conduct. Identification of the toxicity-inducing physicochemical properties of MWCNT is therefore of great importance. We have evaluated histological changes in lung tissue 1 year after a single intratracheal instillation of 11 well-characterized MWCNT in female C57BL/6N BomTac mice. Genotoxicity in liver and spleen was evaluated by the comet assay. The dose of 54 µg MWCNT corresponds to three times the estimated dose accumulated during a work life at a NIOSH recommended exposure limit (0.001 mg/m3 ). Short and thin MWCNT were observed as agglomerates in lung tissue 1 year after exposure, whereas thicker and longer MWCNT were detected as single fibres, suggesting biopersistence of both types of MWCNT. The thin and entangled MWCNT induced varying degree of pulmonary inflammation, in terms of lymphocytic aggregates, granulomas and macrophage infiltration, whereas two thick and straight MWCNT did not. By multiple regression analysis, larger diameter and higher content of iron predicted less histopathological changes, whereas higher cobalt content significantly predicted more histopathological changes. No MWCNT-related fibrosis or tumours in the lungs or pleura was found. One thin and entangled MWCNT induced increased levels of DNA strand breaks in liver; however, no physicochemical properties could be related to genotoxicity. This study reveals physicochemical-dependent difference in MWCNT-induced long-term, pulmonary histopathological changes. Identification of diameter size and cobalt content as important for MWCNT toxicity provides clues for designing MWCNT, which cause reduced human health effects following pulmonary exposure.


Subject(s)
Lung/drug effects , Nanotubes, Carbon/toxicity , Pneumonia/chemically induced , Amyloid/biosynthesis , Animals , Behavior, Animal/drug effects , DNA/genetics , DNA Damage , Female , Granuloma/blood , Granuloma/chemically induced , Granuloma/genetics , Granuloma/pathology , Liver/drug effects , Liver/pathology , Lung/pathology , Mice , Mice, Inbred C57BL , Mutagenicity Tests , Pneumonia/blood , Pneumonia/genetics , Pneumonia/pathology , Spleen/drug effects , Spleen/pathology
15.
Heliyon ; 3(11): e00458, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29234737

ABSTRACT

The utilisation of nanoparticles as the means of targeted delivery of therapeutics and/or imaging agents could greatly enhance the specific transport of biologically active payloads to target tissues while avoiding or reducing undesired side-effects. To allow for this to become a reality, the question of potential toxicological effects needs to be addressed. In the present investigation, a cationic liposome with prospective for medical applications was constructed and thoroughly assessed for any material-induced hepatic adverse effects in vivo - in healthy and alcoholic hepatic disease models and in vitro - (HepG2 cells). The data demonstrated that intravenous injection of liposomes did not cause any significant in vivo hepatic toxicity (inflammation, alterations in blood parameters, anti-oxidant depletion, acute phase response and histopathology) at doses of 200 µg per mouse in either healthy or chronically alcohol fed mice. Additionally, the in vitro material-induced adverse effects (cytotoxicity, inflammation or albumin secretion) were all also minimal. The data from this study demonstrated that the intravenous injection of cationic liposomes does not cause hepatic toxicity. This investigation is important as it investigates the toxicity of a nano-sized material in a model of alcoholic hepatic disease in vitro and in vivo. This is an area of research in the field of nanotoxicology that is currently almost entirely overlooked.

16.
PLoS One ; 12(6): e0178355, 2017.
Article in English | MEDLINE | ID: mdl-28570647

ABSTRACT

We investigated toxicity of 2-3 layered >1 µm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 µg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis.


Subject(s)
Acute-Phase Reaction , Graphite/toxicity , Inflammation/pathology , Lung/drug effects , Mutagens/toxicity , Animals , Bronchoalveolar Lavage Fluid , Female , Graphite/chemistry , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Oxides/chemistry
17.
Toxicol Sci ; 158(1): 176-187, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28453772

ABSTRACT

Silver (Ag) nanoparticles (NPs) are currently among one of the most widely used nanomaterials. This in turn, implies an increased risk of human and environmental exposure. Alcohol abuse is a global issue with millions of people in the general population affected by the associated adverse effects. The excessive consumption of alcohol is a prominent cause of chronic liver disease which manifest in multiple disorders. In this study, the adverse health effects of Ag NP exposure were investigated in models of alcoholic hepatic disease in vitro and in vivo. The data showed that Ag NP induced hepatic health effects were aggravated in the alcohol pretreated mice in comparison to controls with regards to an organ specific inflammatory response, changes in blood biochemistry, acute phase response and hepatic pathology. In addition, alcoholic disease influenced the organ's ability for recovery post-NP challenge. Additionally, it is demonstrated that the in vivo data correlated well with in vitro findings where ethanol pretreatment of hepatocytes resulted in significantly increased inflammatory response post-Ag NP exposure. To the best of our knowledge this is the first study of its kind to investigate nano-sized material-induced hepatic pathology in models representative of susceptible individuals (those with pre-existing alcohol liver disease) within the population. This is an area of research in the field of nanotoxicology, and in particular with regard to NP risk assessment that is almost entirely overlooked.


Subject(s)
Ethanol/administration & dosage , Liver/drug effects , Metal Nanoparticles/toxicity , Silver/chemistry , Acute-Phase Reaction , Animals , Antioxidants/metabolism , Biomarkers/blood , Chemical and Drug Induced Liver Injury , Female , Glutathione/metabolism , Hep G2 Cells , Humans , Inflammation/chemically induced , Interleukin-8/biosynthesis , Liver/metabolism , Liver Diseases, Alcoholic/pathology , Metal Nanoparticles/chemistry , Mice
18.
Mutagenesis ; 32(6): 581-597, 2017 12 31.
Article in English | MEDLINE | ID: mdl-29301028

ABSTRACT

Intratracheal instillation serves as a model for inhalation exposure. However, for this, materials are dispersed in appropriate media that may influence toxicity. We tested whether different intratracheal instillation dispersion media influence the pulmonary toxicity of different nanomaterials. Rodents were intratracheally instilled with 162 µg/mouse/1620 µg/rat carbon black (CB), 67 µg/mouse titanium dioxide nanoparticles (TiO2) or 54 µg/mouse carbon nanotubes (CNT). The dispersion media were as follows: water (CB, TiO2); 2% serum in water (CB, CNT, TiO2); 0.05% serum albumin in water (CB, CNT, TiO2); 10% bronchoalveolar lavage fluid in 0.9% NaCl (CB), 10% bronchoalveolar lavage (BAL) fluid in water (CB) or 0.1% Tween-80 in water (CB). Inflammation was measured as pulmonary influx of neutrophils into bronchoalveolar fluid, and DNA damage as DNA strand breaks in BAL cells by comet assay. Inflammation was observed for all nanomaterials (except 38-nm TiO2) in all dispersion media. For CB, inflammation was dispersion medium dependent. Increased levels of DNA strand breaks for CB were observed only in water, 2% serum and 10% BAL fluid in 0.9% NaCl. No dispersion medium-dependent effects on genotoxicity were observed for TiO2, whereas CNT in 2% serum induced higher DNA strand break levels than in 0.05% serum albumin. In conclusion, the dispersion medium was a determinant of CB-induced inflammation and genotoxicity. Water seemed to be the best dispersion medium to mimic CB inhalation, exhibiting DNA strand breaks with only limited inflammation. The influence of dispersion media on nanomaterial toxicity should be considered in the planning of intratracheal investigations.


Subject(s)
DNA Breaks, Double-Stranded , Nanoparticles/toxicity , Nanotubes, Carbon/toxicity , Pneumonia/pathology , Soot/toxicity , Titanium/toxicity , Animals , Bronchoalveolar Lavage Fluid/cytology , DNA Breaks, Double-Stranded/drug effects , Female , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Neutrophils/metabolism , Particle Size , RNA, Messenger/genetics , RNA, Messenger/metabolism , Water
19.
Mutagenesis ; 32(1): 47-57, 2017 01.
Article in English | MEDLINE | ID: mdl-27658823

ABSTRACT

The influence of surface charge of nanomaterials on toxicological effects is not yet fully understood. We investigated the inflammatory response, the acute phase response and the genotoxic effect of two different titanium dioxide nanoparticles (TiO2 NPs) following a single intratracheal instillation. NRCWE-001 was unmodified rutile TiO2 with endogenous negative surface charge, whereas NRCWE-002 was surface modified to be positively charged. C57BL/6J BomTac mice received 18, 54 and 162 µg/mouse and were humanely killed 1, 3 and 28 days post-exposure. Vehicle controls were tested alongside for comparison. The cellular composition and protein concentration were determined in bronchoalveolar lavage (BAL) fluid as markers for an inflammatory response. Pulmonary and systemic genotoxicity was analysed by the alkaline comet assay as DNA strand breaks in BAL cells, lung and liver tissue. The pulmonary and hepatic acute phase response was analysed by Saa3 mRNA levels in lung tissue or Saa1 mRNA levels in liver tissue by real-time quantitative polymerase chain reaction. Instillation of NRCWE-001 and -002 both induced a dose-dependent neutrophil influx into the lung lining fluid and Saa3 mRNA levels in lung tissue at all assessed time points. There was no statistically significant difference between NRCWE-001 and NRCWE-002. Exposure to both TiO2 NPs induced increased levels of DNA strand breaks in lung tissue at all doses 1 and 28 days post-exposure and NRCWE-002 at the low and middle dose 3 days post-exposure. The DNA strand break levels were statistically significantly different for NRCWE-001 and -002 for liver and for BAL cells, but no consistent pattern was observed. In conclusion, functionalisation of reactive negatively charged rutile TiO2 to positively charged did not consistently influence pulmonary toxicity of the studied TiO2 NPs.


Subject(s)
Acute-Phase Reaction , DNA Damage , Liver/drug effects , Lung/drug effects , Metal Nanoparticles/toxicity , Titanium/toxicity , Animals , Comet Assay , DNA/drug effects , Female , Liver/immunology , Liver/metabolism , Lung/immunology , Lung/metabolism , Metal Nanoparticles/chemistry , Mice , Oxidative Stress/drug effects , Titanium/pharmacology
20.
Toxicology ; 371: 29-40, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27725195

ABSTRACT

Exposure to high aspect ratio nanomaterials, such as multi-walled carbon nanotubes (MWCNTs) may be associated with increased risk of atherosclerosis, pulmonary disease, and cancer. In the present study, we investigated the cardiovascular and pulmonary health effects of 10 weeks of repeated oral or pulmonary exposures to MWCNTs (4 or 40µg each week) in Apolipoprotein E-deficient (ApoE-/-) mice fed a Western-type diet. Intratracheal instillation of MWCNTs was associated with oxidative damage to DNA in lung tissue and elevated levels of lipid peroxidation products in plasma, whereas the exposure only caused a modest pulmonary inflammation in terms of increased numbers of lymphocytes in bronchoalveolar lavage fluid. Ultrasound imaging in live animals revealed an increase in the inner and outer wall thickness of the aortic arch at 10 weeks after pulmonary exposure to MWCNTs, which may suggest artery remodelling. However, we did not find accelerated plaque progression in the aorta or the brachiocephalic artery by histopathology. Furthermore, repeated oral exposure to MWCNTs did not cause changes in the composition of gut microbiota of exposed mice. Collectively, this study indicates that repeated pulmonary exposure to MWCNTs was associated with oxidative stress, whereas cardiovascular effects encompassed remodelling of the aorta wall.


Subject(s)
Apolipoproteins E/genetics , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/genetics , Nanotubes, Carbon/toxicity , Animals , Apolipoproteins E/deficiency , Bronchoalveolar Lavage Fluid/cytology , DNA Damage , Diet , Inhalation Exposure , Lipid Peroxidation/drug effects , Lung/drug effects , Lung/metabolism , Lung Diseases/chemically induced , Lung Diseases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota/drug effects , Oxidative Stress/drug effects , Particle Size , Plaque, Atherosclerotic/pathology , Pneumonia/chemically induced , Pneumonia/metabolism , Pneumonia/pathology , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...