Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38495585

ABSTRACT

AKT is an essential player in the phosphoinositide 3-kinase (PI3K) signalling pathway. Although the mechanisms of its action are well understood at the plasma membrane, AKT can also be found in the nucleus. In adipocytes, this pathway is activated during the process of adipogenesis and solicits both plasma membrane and nuclear AKT activity. However, the endogenous presence of active AKT in the nucleus during adipogenesis has not been shown. Here, we show that the levels of active AKT phosphorylated at Ser-473 increase rapidly after the induction of differentiation in 3T3-L1 cells, both in the cytoplasm and in the nucleus, and tend to remain elevated over the course of differentiation. In conclusion, these results support the notion that nuclear AKT plays an important role in this process.

2.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37038481

ABSTRACT

Polyphosphoinositides (PPIn) play essential functions as lipid signalling molecules and many of their functions have been elucidated in the cytoplasm. However, PPIn are also intranuclear where they contribute to chromatin remodelling, transcription and mRNA splicing. Using quantitative interactomics, we have previously identified PPIn-interacting proteins with roles in RNA processing/splicing including the heterogeneous nuclear ribonucleoprotein U (hnRNPU/SAF-A). In this study, hnRNPU was validated as a direct PPIn-interacting protein via 2 regions located in the N and C termini. Furthermore, deletion of the polybasic motif region located at aa 9-24 in its DNA binding SAP domain prevented PPIn interaction. In conclusion, these results are consistent with hnRNPU harbouring a polybasic region with dual functions in DNA and PPIn interaction.

3.
Adv Biol Regul ; 83: 100843, 2022 01.
Article in English | MEDLINE | ID: mdl-34920983

ABSTRACT

The phosphoinositide 3-kinase (PI3K) signalling pathway plays key roles in many cellular processes and is altered in many diseases. The function and mode of action of the pathway have mostly been elucidated in the cytoplasm. However, many of the components of the PI3K pathway are also present in the nucleus at specific sub-nuclear sites including nuclear speckles, nuclear lipid islets and the nucleolus. Nucleoli are membrane-less subnuclear structures where ribosome biogenesis occurs. Processes leading to ribosome biogenesis are tightly regulated to maintain protein translation capacity of cells. This review focuses on nucleolar PI3K signalling and how it regulates rRNA synthesis, as well as on the identification of downstream phosphatidylinositol (3,4,5)trisphosphate effector proteins.


Subject(s)
Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Humans , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
4.
Adv Biol Regul ; 72: 7-21, 2019 05.
Article in English | MEDLINE | ID: mdl-31003946

ABSTRACT

Biomolecular interactions between proteins and polyphosphoinositides (PPIn) are essential in the regulation of the vast majority of cellular processes. Consequently, alteration of these interactions is implicated in the development of many diseases. PPIn are phosphorylated derivatives of phosphatidylinositol and consist of seven species with different phosphate combinations. PPIn signal by recruiting proteins via canonical domains or short polybasic motifs. Although their actions are predominantly documented on cytoplasmic membranes, six of the seven PPIn are present within the nucleus together with the PPIn kinases, phosphatases and phospholipases that regulate their turnover. Importantly, the contribution of nuclear PPIn in the regulation of nuclear processes has led to an increased recognition of their importance compared to their more accepted cytoplasmic roles. This review summarises our knowledge on the identification and functional characterisation of nuclear PPIn-effector proteins as well as their mode of interactions, which tend to favour polybasic motifs.


Subject(s)
Cell Nucleus/metabolism , Phosphatidylinositol Phosphates/metabolism , Animals , Cell Nucleus/enzymology , Cell Nucleus/genetics , Humans , Phospholipases/genetics , Phospholipases/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism
5.
Int J Mol Sci ; 19(12)2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30544563

ABSTRACT

The phosphoinositide 3-kinase (PI3K) signalling pathway is highly dysregulated in cancer, leading to elevated PI3K signalling and altered cellular processes that contribute to tumour development. The pathway is normally orchestrated by class I PI3K enzymes and negatively regulated by the phosphatase and tensin homologue, PTEN. Endometrial carcinomas harbour frequent alterations in components of the pathway, including changes in gene copy number and mutations, in particular in the oncogene PIK3CA, the gene encoding the PI3K catalytic subunit p110α, and the tumour suppressor PTEN. PIK3CB, encoding the other ubiquitously expressed class I isoform p110ß, is less frequently altered but the few mutations identified to date are oncogenic. This isoform has received more research interest in recent years, particularly since PTEN-deficient tumours were found to be reliant on p110ß activity to sustain transformation. In this review, we describe the current understanding of the common and distinct biochemical properties of the p110α and p110ß isoforms, summarise their mutations and highlight how they are targeted in clinical trials in endometrial cancer.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/metabolism , Endometrial Neoplasms/enzymology , Endometrial Neoplasms/metabolism , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Animals , Class I Phosphatidylinositol 3-Kinases/genetics , Endometrial Neoplasms/genetics , Female , Humans , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinase/genetics
6.
Cell Signal ; 28(10): 1593-603, 2016 10.
Article in English | MEDLINE | ID: mdl-27404349

ABSTRACT

DNA topoisomerases (Topo) are multifunctional enzymes resolving DNA topological problems such as those arising during DNA replication, transcription and mitosis. Mammalian cells express 2 class II isoforms, Topoisomerases IIα (Topo IIα) and IIß (Topo IIß), which have similar enzymatic properties but are differently expressed, in dividing and pluripotent cells, and in post-mitotic and differentiated cells respectively. Pre-adipocytes re-enter the cell cycle prior to committing to their differentiation and we hypothesised that Topo II could contribute to these processes. We show that Topo IIα expression in 3T3-L1 cells is induced within 16h after the initiation of the differentiation programme, peaks at 24h and rapidly declines thereafter. In contrast Topo IIß was present both in pre-adipocytes and throughout differentiation. Inhibition of PI3K with LY294002, known to prevent adipocyte differentiation, consistently reduced the expression of Topo IIα, whereas a clear effect on Topo IIß was not apparent. In addition, inhibition of mTOR with rapamycin also reduced the protein levels of Topo IIα. Using specific class IA PI3K catalytic subunit inhibitors, we show that p110α inhibition with A66 has the greatest reduction of Topo IIα expression and of differentiation, as measured by triglyceride storage. The timing of Topo IIα expression coincides with the mitotic clonal expansion (MCE) phase of differentiation and inhibition of Topo II with ICRF-187 during this stage decreased PPARγ1 and 2 protein levels and triglyceride storage, whereas inhibition later on has little impact. Moreover, the addition of ICRF-187 had no effect on the incorporation of EdU during S-phase at day 1 but lowered the relative cell numbers on day 2. ICRF-187 also induced an increase in the centri/pericentromeric heterochromatin localisation of Topo IIα, indicating a role for Topo IIα at these locations during MCE. In summary, we present evidence that Topo IIα plays an important role in adipogenesis during MCE and in a PI3K/mTOR-dependent manner. Considering that Topoisomerases II are targets in cancer chemotherapy, our results highlight that treatment of cancer with Topo II inhibitors may alter metabolic processes in the adipose tissue.


Subject(s)
Adipogenesis , DNA Topoisomerases, Type II/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/metabolism , Animals , Biocatalysis , Cell Proliferation , Clone Cells , DNA/biosynthesis , Isoenzymes/metabolism , Mice , Mitosis , PPAR gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...