Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1385456, 2024.
Article in English | MEDLINE | ID: mdl-38779063

ABSTRACT

Most plants produce large amounts of seeds to disperse their progeny in the environment. Plant viruses have evolved to avoid plant resistance mechanisms and use seeds for their dispersal. The presence of plant pathogenic viruses in seeds and suppression of plant host defenses is a major worldwide concern for producers and seed companies because undetected viruses in the seed can represent a significant threat to yield in many economically important crops. The vertical transmission of plant viruses occurs directly through the embryo or indirectly by getting in pollen grains or ovules. Infection of plant viruses during the early development of the seed embryo can result in morphological or genetic changes that cause poor seed quality and, more importantly, low yields due to the partial or ubiquitous presence of the virus at the earliest stages of seedling development. Understanding transmission of plant viruses and the ability to avoid plant defense mechanisms during seed embryo development will help identify primary inoculum sources, reduce virus spread, decrease severity of negative effects on plant health and productivity, and facilitate the future of plant disease management during seed development in many crops. In this article, we provide an overview of the current knowledge and understanding of plant virus transmission during seed embryo development, including the context of host-virus interaction.

2.
Front Plant Sci ; 15: 1341781, 2024.
Article in English | MEDLINE | ID: mdl-38525153

ABSTRACT

Upon acquisition of persistent circulative viruses such as poleroviruses, the virus particles transcytose through membrane barriers of aphids at the midgut and salivary glands via hemolymph. Such intricate interactions can influence aphid behavior and fitness and induce associated gene expression in viruliferous aphids. Differential gene expression can be evaluated by omics approaches such as transcriptomics. Previously conducted aphid transcriptome studies used only one host species as the source of virus inoculum. Viruses typically have alternate hosts. Hence, it is not clear how alternate hosts infected with the same virus isolate alter gene expression in viruliferous vectors. To address the question, this study conducted a transcriptome analysis of viruliferous aphids that acquired the virus from different host species. A polerovirus, cotton leafroll dwarf virus (CLRDV), which induced gene expression in the cotton aphid, Aphis gossypii Glover, was assessed using four alternate hosts, viz., cotton, hibiscus, okra, and prickly sida. Among a total of 2,942 differentially expressed genes (DEGs), 750, 310, 1,193, and 689 genes were identified in A. gossypii that acquired CLRDV from infected cotton, hibiscus, okra, and prickly sida, respectively, compared with non-viruliferous aphids that developed on non-infected hosts. A higher proportion of aphid genes were overexpressed than underexpressed following CLRDV acquisition from cotton, hibiscus, and prickly sida. In contrast, more aphid genes were underexpressed than overexpressed following CLRDV acquisition from okra plants. Only four common DEGs (heat shock protein, juvenile hormone acid O-methyltransferase, and two unannotated genes) were identified among viruliferous aphids from four alternate hosts. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations indicated that the acquisition of CLRDV induced DEGs in aphids associated with virus infection, signal transduction, immune systems, and fitness. However, these induced changes were not consistent across four alternate hosts. These data indicate that alternate hosts could differentially influence gene expression in aphids and presumably aphid behavior and fitness despite being infected with the same virus isolate.

4.
Insects ; 14(9)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37754723

ABSTRACT

Parasitoids forage for hosts in dynamic ecosystems and generally have a short period of time to access hosts. The current study examined the optimal reproductive attributes of two egg parasitoids, Paratelenomus saccharalis Dodd (Hymenoptera: Platygastridae) and Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae), of the kudzu bug, Megacopta cribraria Fabricius (Hemiptera: Plataspidae). The proportion of O. nezarae and P. saccharalis adult offspring that emerged from M. cribraria eggs and the sex ratio of the parasitoid offspring were compared among treatments for the effects of different adult parasitoid food sources, host egg-to-adult parasitoid ratios, and host exposure times. Our results suggest that honey solution as a food source, a 21:7 host-to-parasitoid ratio, and three-to-five days of exposure time optimized the production of female O. nezarae offspring. For P. saccharalis, honey solution as a food source, a 21:7 host-to-parasitoid ratio, and one day were optimal for maximizing female offspring production. These findings provide new information about the biology of these egg parasitoids.

5.
Insects ; 14(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37504610

ABSTRACT

Cotton leafroll dwarf virus (CLRDV) is an introduced Polerovirus (Family: Solemoviridae) of cotton, Gossypium hirsutum L., in the U.S. The only vector known to transmit this virus to cotton is the cotton aphid, Aphis gossypii Glover; however, there are seven other species of aphids (Hemiptera: Aphididae) reported to colonize cotton in the southeastern U.S.: Protaphis middletonii (Thomas), Rhopalosiphum rufiabdominale (Sasaki), Aphis craccivora Koch, Macrosiphum euphorbiae Thomas, Myzus persicae (Sulzer), Smythurodes betae Westwood, and Aphis fabae Scopoli. Little to no information is available on annual population dynamics of these species in the southeastern U.S. The timing of CLRDV spread to cotton plantings is also unknown. The objective of this study was to monitor the population dynamics of eight cotton-feeding aphid species concurrent with the spread of CLRDV at three different locations in Alabama. Aphids were monitored weekly for two years with yellow pan traps, and sentinel plants were deployed weekly to monitor CLRDV spread throughout the cotton-growing season. During the two years, most CLRDV spread at all locations occurred when A. gossypii was actively dispersing in the field. Early season spread at sites in south and central Alabama, when A. gossypii was not abundant, suggests additional aphid vectors are possible.

6.
Insects ; 14(7)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37504645

ABSTRACT

Cotton leafroll dwarf virus (CLRDV) is an emerging aphid-borne pathogen infecting cotton, Gossypium hirsutum L., in the southern United States (U.S.). The cotton aphid, Aphis gossypii Glover, infests cotton annually and is the only known vector to transmit CLRDV to cotton. Seven other species have been reported to feed on, but not often infest, cotton: Protaphis middletonii Thomas, Aphis craccivora Koch, Aphis fabae Scopoli, Macrosiphum euphorbiae Thomas, Myzus persicae Sulzer, Rhopalosiphum rufiabdominale Sasaki, and Smynthurodes betae Westwood. These seven have not been studied in cotton, but due to their potential epidemiological importance, an understanding of the intra- and inter-annual variations of these species is needed. In 2020 and 2021, aphids were monitored from North Carolina to Texas using pan traps around cotton fields. All of the species known to infest cotton, excluding A. fabae, were detected in this study. Protaphis middletonii and A. gossypii were the most abundant species identified. The five other species of aphids captured were consistently low throughout the study and, with the exception of R. rufiabdominale, were not detected at all locations. The abundance, distribution, and seasonal dynamics of cotton-infesting aphids across the southern U.S. are discussed.

7.
Front Microbiol ; 14: 1163566, 2023.
Article in English | MEDLINE | ID: mdl-37303798

ABSTRACT

Cassava is a root crop important for global food security and the third biggest source of calories on the African continent. Cassava production is threatened by Cassava mosaic disease (CMD), which is caused by a complex of single-stranded DNA viruses (family: Geminiviridae, genus: Begomovirus) that are transmitted by the sweet potato whitefly (Bemisia tabaci). Understanding the dynamics of different cassava mosaic begomovirus (CMB) species through time is important for contextualizing disease trends. Cassava plants with CMD symptoms were sampled in Lake Victoria and coastal regions of Kenya before transfer to a greenhouse setting and regular propagation. The field-collected and greenhouse samples were sequenced using Illumina short-read sequencing and analyzed on the Galaxy platform. In the field-collected samples, African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), East African cassava mosaic Kenya virus (EACMKV), and East African cassava mosaic virus-Uganda variant (EACMV-Ug) were detected in samples from the Lake Victoria region, while EACMV and East African mosaic Zanzibar virus (EACMZV) were found in the coastal region. Many of the field-collected samples had mixed infections of EACMV and another begomovirus. After 3 years of regrowth in the greenhouse, only EACMV-like viruses were detected in all samples. The results suggest that in these samples, EACMV becomes the dominant virus through vegetative propagation in a greenhouse. This differed from whitefly transmission results. Cassava plants were inoculated with ACMV and another EACMV-like virus, East African cassava mosaic Cameroon virus (EACMCV). Only ACMV was transmitted by whiteflies from these plants to recipient plants, as indicated by sequencing reads and copy number data. These results suggest that whitefly transmission and vegetative transmission lead to different outcomes for ACMV and EACMV-like viruses.

8.
Sci Rep ; 13(1): 10059, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37344614

ABSTRACT

Cassava mosaic disease is caused by a complex of whitefly-transmitted begomoviruses, which often occur in co-infections. These viruses have bipartite genomes consisting of DNA-A and DNA-B that are encapsidated into separate virions. Individual viruses exist in plants and whitefly vectors as populations comprising both genome segments, which can occur at different frequencies. Both segments are required for infection, and must be transmitted for virus spread to occur. Cassava plants infected with African cassava mosaic virus (ACMV) and/or East African cassava mosaic Cameroon virus (EACMCV), in which the ratios of DNA-A:DNA-B titers differed between plants, were used to examine how titers of the segments in a plant relate to their respective probabilities of acquisition by whiteflies and to the titers of each segment acquired and subsequently transmitted by whiteflies. The probabilities of acquiring each segment of ACMV did not reflect their relative titers in the source plant but they did for EACMCV. However, for both viruses, DNA-A:DNA-B ratios acquired by whiteflies differed from those in the source plant and the ratios transmitted by the whitefly did not differ from one - the ratio at which the highest probability of transmitting both segments is expected.


Subject(s)
Begomovirus , Hemiptera , Manihot , Animals , Begomovirus/genetics , Plants , Vegetables , Plant Diseases
9.
BMC Genomics ; 24(1): 343, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37344773

ABSTRACT

BACKGROUND: The tobacco thrips (Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips (Thrips palmi Karny) and the western flower thrips (Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. RESULTS: A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis. Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species' genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis. Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella, but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. CONCLUSIONS: The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status.


Subject(s)
Thysanoptera , Animals , Thysanoptera/physiology , Insecta , Crops, Agricultural , Evolution, Molecular , Epigenesis, Genetic
10.
J Econ Entomol ; 116(3): 719-725, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37171119

ABSTRACT

Cotton leafroll dwarf virus (CLRDV) is a yield-limiting, aphid-transmitted virus that was identified in cotton, Gossypium hirsutum L., in the United States of America in 2017. CLRDV is currently classified in the genus Polerovirus, family Solemoviridae. Although 8 species of aphids (Hemiptera: Aphididae) are reported to infest cotton, Aphis gossypii Glover is the only known vector of CLRDV to this crop. Aphis gossypii transmits CLRDV in a persistent and nonpropagative manner, but acquisition and retention times have only been partially characterized in Brazil. The main objectives of this study were to characterize the acquisition access period, the inoculation access period, and retention times for a U.S. strain of CLRDV and A. gossypii population. A sub-objective was to test the vector competence of Myzus persicae Sulzer and Aphis craccivora Koch. In our study, A. gossypii apterous and alate morphs were able to acquire CLRDV in 30 min and 24 h, inoculate CLRDV in 45 and 15 min, and retain CLRDV for 15 and 23 days, respectively. Neither M. persicae nor A. craccivora acquired or transmitted CLRDV to cotton.


Subject(s)
Aphids , Luteoviridae , Animals , United States , Gossypium , Brazil
11.
Pest Manag Sci ; 79(3): 1040-1047, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36327354

ABSTRACT

BACKGROUND: Widespread reports of reduced efficacy of imidacloprid for managing cotton aphids (Aphis gossypii Glover) in cotton (Gossypium hirsutum L.) prompted an investigation to characterize the susceptibility of 43 populations over a 2-year period. The susceptibility of A. gossypii populations to imidacloprid was examined by calculating LC50 values. Further analyses related resistance assay results to a gradient of cotton production intensity. RESULTS: Concentration-mortality bioassays documencted populations that were 4.26-607.16 times more resistant than the susceptible laboratory population. There was a significant positive relationship between LC50 values and percentage of cotton within 2.5- and 5-km buffers surrounding collection sites. No significant relationship was detected between LC50 values and the percentage of alternative crop and noncrop hosts. CONCLUSION: Variable and high levels of resistance were detected in A. gossypii populations, and this variation was positively associated with cotton production intensity. Cotton is a host that may receive multiple applications of neonicotinoids (via seed treatment and foliar sprays) annually for seedling and mid-season pests. Rotating modes of action and limiting insecticide use should be implemented to delay the evolution of insecticide resistance in A. gossypii populations. © 2022 Society of Chemical Industry.


Subject(s)
Aphids , Insecticides , Animals , Gossypium , Neonicotinoids/pharmacology , Insecticides/pharmacology , Insecticide Resistance
12.
Insects ; 13(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36354863

ABSTRACT

Studies on the management of the invasive Melanaphis sorghi are essential to refining integrated pest management strategies against M. sorghi in forage sorghum in the USA. The objective of this study was to determine the impact of planting date (early planting and late planting) and in-furrow and foliar insecticide application of flupyradifurone, on M. sorghi infestation and forage sorghum yield in Tifton, Georgia and Florence, South Carolina, USA, in 2020 and 2021. Early planted sorghum supported slightly higher aphid density and severity of infestation as evident in the greater cumulative insect days values in the early planted sorghum at both Florence and Tifton in 2020 and 2021. A single foliar application reduced aphid infestations below the threshold level of 50 aphids per leaf. In contrast, in-furrow insecticidal application in selected plots at both locations significantly suppressed M. sorghi density to near-zero levels. Yield results in Florence in 2020 showed that sorghum yield was over 50% greater in early planted plots compared to late planted plots. Both insecticide treatments (foliar and in-furrow) resulted in significantly higher yield than untreated plots. These data indicate that early planting coupled with in-furrow and foliar insecticide applications can suppress M. sorghi infestations and improve silage production in forage sorghum in the USA.

13.
Sci Rep ; 12(1): 20355, 2022 11 27.
Article in English | MEDLINE | ID: mdl-36437281

ABSTRACT

This study investigated the role of vector acquisition and transmission on the propagation of single and co-infections of tomato yellow leaf curl virus (TYLCV,) and tomato mottle virus (ToMoV) (Family: Geminiviridae, Genus: Begomovirus) by the whitefly vector Bemisia tabaci MEAM1 (Gennadius) in tomato. The aim of this research was to determine if the manner in which viruses are co-acquired and co-transmitted changes the probability of acquisition, transmission and new host infections. Whiteflies acquired virus by feeding on singly infected plants, co-infected plants, or by sequential feeding on singly infected plants. Viral titers were also quantified by qPCR in vector cohorts, in artificial diet, and plants after exposure to viruliferous vectors. Differences in transmission, infection status of plants, and titers of TYLCV and ToMoV were observed among treatments. All vector cohorts acquired both viruses, but co-acquisition/co-inoculation generally reduced transmission of both viruses as single and mixed infections. Co-inoculation of viruses by the vector also altered virus accumulation in plants regardless of whether one or both viruses were propagated in new hosts. These findings highlight the complex nature of vector-virus-plant interactions that influence the spread and replication of viruses as single and co-infections.


Subject(s)
Coinfection , Geminiviridae , Plant Viruses , Animals , Disease Vectors , Vaccination
14.
Viruses ; 14(10)2022 10 13.
Article in English | MEDLINE | ID: mdl-36298804

ABSTRACT

The identification of alternate hosts that can act as virus inoculum sources and vector reservoirs in the landscape is critical to understanding virus epidemics. Cotton leafroll dwarf virus (CLRDV) is a serious pathogen in cotton production and is transmitted by the cotton/melon aphid, Aphis gossypii, in a persistent, circulative, and non-propagative manner. CLRDV was first reported in the United States in Alabama in 2017, and thereafter in several cotton-producing states. CLRDV has since established itself in the southeastern United States. The role of alternate hosts in CLRDV establishment is not clear. Fourteen common plant species in the landscape, including crops, weeds, and ornamentals (cotton, hollyhock, marshmallow, country mallow, abutilon, arrowleaf sida, okra, hibiscus, squash, chickpea, evening primrose, henbit, Palmer amaranth, and prickly sida) were tested as potential alternate hosts of CLRDV along with an experimental host (Nicotiana benthamiana) via aphid-mediated transmission assays. CLRDV was detected following inoculation in hibiscus, okra, N. benthamiana, Palmer amaranth, and prickly sida by RT-PCR, but not in the others. CLRDV accumulation determined by RT-qPCR was the highest in N. benthamiana compared with cotton and other hosts. However, aphids feeding on CLRDV-infected prickly sida, hibiscus, and okra alone were able to acquire CLRDV and back-transmit it to non-infected cotton seedlings. Additionally, some of the alternate CLRDV hosts supported aphid development on par with cotton. However, in a few instances, aphid fitness was reduced when compared with cotton. Overall, this study demonstrated that plant hosts in the agricultural landscape can serve as CLRDV inoculum sources and as aphid reservoirs and could possibly play a role in the reoccurring epidemics of CLRDV in the southeastern United States.


Subject(s)
Aphids , Luteoviridae , Animals , United States , Prospective Studies , Luteoviridae/genetics , Nicotiana , Gossypium
15.
Front Plant Sci ; 13: 1006225, 2022.
Article in English | MEDLINE | ID: mdl-36186020

ABSTRACT

The invasive Melanaphis sorghi (Theobald; =Melanaphis sacchari Zehntner) is a serious pest of sorghum production in the southern USA. Demonstration of technologies that provide effective control is key to management of this pest. Here, we investigated the effect of host plant resistance (resistant cultivar: DKS37-07 and susceptible cultivar: DKS53-53) and a single foliar insecticide (flupyradifurone: Sivanto Prime) application on M. sorghi infestations and the role of natural enemy populations in grain sorghum production across five locations in four states in southeastern USA. Foliar insecticide application significantly suppressed M. sorghi infestations on both the resistant and susceptible sorghum cultivars across all locations. Planting the host plant resistant cultivar (DKS37-07) significantly reduced aphid infestation across all locations. Plant damage ratings did not vary widely, but there was generally a positive association between aphid counts and observed plant damage, suggesting that increasing aphid numbers resulted in corresponding increase in plant damage. Planting a host plant resistant cultivar and foliar insecticide application generally preserved grain yield. Both sorghum hybrids supported an array of different life stages of natural enemies (predators [lady beetle larvae and adults; hoverfly larvae and lacewing larvae] and parasitoids [a braconid and aphelinid]) for both the sprayed and non-sprayed treatments. We found a strong and significant positive relationship between the natural enemies and the M. sorghi infestation. Results suggest that planting a host plant resistant cultivar and the integration of natural enemies with insecticide control methods in the management of M. sorghi is central to the development of an effective pest management strategy against this invasive pest.

16.
Plant Dis ; 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35412338

ABSTRACT

Cotton (Gossypium hirsutum L.) is used as a non-host of tomato yellow leaf curl virus (TYLCV) (family Geminiviridae, genus Begomovirus) in many studies (Ghanim and Czosnek 2000; Legarrea et al. 2015; Zeidan and Czosnek 1991), but only one reports methods used to determine host-status (Sinisterra et al. 2005), and there is one contradictory report from China stating cotton is a host of TYLCV (Li et al. 2014). In October 2018, cotton was screened for the presence of begomoviruses in Elmore, Escambia and Macon Counties, AL, where infestations of its whitefly vector (Bemisia tabaci Genn.) occurred in August. DNA was extracted from fully expanded leaves from the upper 1/3 of the canopy using a DNeasy® Plant Mini Kit (QIAGEN, Hilden, Germany) and amplified with primers V324/C889 targeting a 575 bp coat protein fragment of begomoviruses (Brown et al. 2001). Five out of 200 cotton samples tested positive, and sequences recovered from three samples revealed 98-99% identity to TYLCV isolates in NCBI (Accession Nos. MT947801-03); sequences from the other two samples were of low quality and inconclusive. These samples were not available for additional tests, therefore, we proceeded to confirm host status using a monopartite clone of TYLCV-Israel (Reyes et al. 2013) reported in the US (Polston et al. 1999). All experiments were conducted in growth chambers with 16:8 light:dark cycle at 25.0℃ and 50% RH. Cotton seedlings (DeltaPine 1646 B2XF) at the 2-3 true leaf stage and tomatoes (Solanum lycopersicum L., var. 'Florida Lanai') at the 4 true leaf stage were agroinoculated at the stem tissue between the apical meristem and the first node (Reyes et al. 2013). Tomato served as a positive control; tomato and cotton mock inoculated with an empty vector were negative controls. A hole-punch was used to collect 4 leaf discs along midveins of the three, uppermost fully expanded leaves. DNA was extracted 28 days after inoculation as described above. A 390 bp segment of the intergenic region of TYLCV-A was amplified using primers PTYIRc287/PTYIRv21 (Nakhla et al., 1993). PCR results from agroinoculated plants confirmed (2/18) cotton plants, (5/5) tomatoes and (0/10) mock inoculated controls were infected with TYLCV. Whitefly transmission to cotton was confirmed using a leaf-disc bioassay for rapid testing (Czosnek et al. 1993). Bemisia tabaci MEAM-1 reared on eggplant (non-host of TYLCV) were placed on agroinoculated TYLCV-infected tomato/span> plants for a 96-h acquisition access period. Cohorts of 10 viruliferous B. tabaci were aspirated into 30mL cups each containing a 2.5cm healthy cotton leaf disc set in plant agar. After a 48-h inoculation access period, adults and their eggs were removed from the leaf discs. Leaf discs were held another 96-h before they were tested for TYLCV using the methods described above. TYLCV-infection was confirmed in (9/20) cotton leaf discs, demonstrating the viral load delivered by whiteflies was high enough to initiate local infection in cotton. No obvious begomovirus symptoms were observed on cotton plants in the field or laboratory. Field collection of samples was prompted by symptoms attributed to cotton leafroll dwarf virus (Avelar et al. 2017). TYLCV infection of cotton does not appear to be of economic importance. Additional information is needed to determine the frequency of infection in the field, specificity of TYLCV isolate x cotton genotype interactions leading to successful infection, and underlying causes of conflicting host-status reports in previously published studies.

17.
Insects ; 13(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055931

ABSTRACT

Tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), is an economically damaging pest in cotton production systems across the southern United States. We systematically scouted 120 commercial cotton fields across five southeastern states during susceptible growth stages in 2019 and 2020 to investigate sampling optimization and the effect of interface crop and landscape composition on L. lineolaris abundance. Variance component analysis determined field and within-field spatial scales, compared with agricultural district and state, accounted for more variation in L. lineolaris density using sweep net and drop cloth sampling. This result highlights the importance of field-level scouting efforts. Using within-field samples, a fixed-precision sampling plan determined 8 and 23 sampling units were needed to determine L. lineolaris population estimates with 0.25 precision for sweep net (100 sweeps per unit) and drop cloth (1.5 row-m per unit) sampling, respectively. A spatial Bayesian hierarchical model was developed to determine local landscape (<0.5 km from field edges) effects on L. lineolaris in cotton. The proportion of agricultural area and double-crop wheat and soybeans were positively associated with L. lineolaris density, and fields with more contiguous cotton areas negatively predicted L. lineolaris populations. These results will improve L. lineolaris monitoring programs and treatment management decisions in southeastern USA cotton.

18.
Insects ; 14(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36661963

ABSTRACT

The present study investigated egg parasitoid interspecific interactions between a generalist, Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae) and a specialist, Paratelenomus saccharalis Dodd (Hymenoptera: Platygastridae) in a laboratory setting using kudzu bug (Megacopta cribraria Fabricius, (Hemiptera: Plataspidae)) eggs as their shared host. Three experiments were conducted to evaluate the emergence of wasps from parasitized hosts after the simultaneous and sequential release of wasps, monitor aggressive behavior of P. saccharalis, and quantify intraguild predation of O. nezarae larvae on heterospecific P. saccharalis larvae. Results showed that total host egg parasitism was higher when both wasps were released simultaneously than if wasps were released sequentially. Ooencyrtus nezarae produced more total offspring than P. saccharalis in all sequential/simultaneous treatments but produced male offspring in most cases. In the aggressive behavioral experiment, specialist, P. saccharalis used head butting to fight O. nezarae, but no other aggressions were observed. In an experiment examining intraguild predation, O. nezarae was able to develop in host eggs parasitized by P. saccharalis four days earlier, acting as a superior larval competitor. These findings shed light on the potential interspecific interactions between O. nezarae and P. saccharalis, which may determine their relative abundance and influence their compatibility in kudzu bug biological control programs.

19.
Front Insect Sci ; 2: 830997, 2022.
Article in English | MEDLINE | ID: mdl-38468792

ABSTRACT

The sorghum (Sorghum bicolor [L.]) agroecosystem of North America provided an opportunity to evaluate agroecosystem response to an invading insect herbivore, Melanaphis sorghi (Theobald) (sorghum aphid) (previously published as Melanaphis sacchari Zehntner) (Hemiptera: Aphididae) onto a widely planted crop that experiences a range of agro-landscape and weather conditions. Initial sorghum risk assessments after M. sorghi's invasion in the mid-2010s provided forecasts of range expansion and annual migration, which were based on aphid life history, extent of sorghum cultivation and susceptibility to M. sorghi, and weather (aphid-plant-weather [APW] risk scenario). A more comprehensive risk assessment proposed here brings top-down forces of M. sorghi-natural enemy interactions to the forefront as mediated by agro-landscape and weather conditions (aphid-enemy/landscape-weather mediated [AE/LW] risk scenario). A hypothesis of regional differences in aphids and natural enemies and sensitivity to agro-landscape and weather was tested using empirical data of insect, landscape, and weather data across 5 years and four regions (two in the U.S. Great Plains [South GP and North GP], one farther south (South), and one in the southeast U.S. [South E]). Natural enemies were widespread with two parasitoids and four coccinellid species common across regions, but regional variation in M. sorghi and natural enemy abundance was detected. The AE/LW risk scenario accounted for natural enemy abundance and activity that was highest in the South region, functioned well across agro-landscape and weather conditions, and was accompanied by average low M. sorghi abundance (~23 M. sorghi per leaf). Positive correlations of natural enemy-M. sorghi abundance also occurred in the South GP region where M. sorghi abundance was low (~20 M. sorghi per leaf), and selected natural enemy activity appeared to be mediated by landscape composition. Melanaphis sorghi abundance was highest in the South E region (~136 aphids/leaf) where natural enemy activity was low and influenced by weather. The AE/LW risk scenario appeared suited, and essential in the South region, in assessing risk on a regional scale, and sets the stage for further modeling to generate estimates of the degree of influence of natural enemies under varying agro-landscape and weather conditions considered in the AE/LW risk scenario. Broadly, these findings are relevant in understanding agroecosystem resilience and recommending supportive management inputs in response to insect invasions in context of natural enemy activity and varied environmental conditions.

20.
J Gen Virol ; 102(7)2021 07.
Article in English | MEDLINE | ID: mdl-34310272

ABSTRACT

Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.


Subject(s)
Begomovirus/genetics , Genetic Variation , Manihot/growth & development , Manihot/virology , Plant Diseases/virology , Base Sequence , Begomovirus/physiology , Codon , DNA, Intergenic , DNA, Viral/genetics , Evolution, Molecular , Genome, Viral , Mutation , Polymorphism, Single Nucleotide , Satellite Viruses/genetics , Satellite Viruses/physiology , Sequence Deletion , Temperature , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...