Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Bioresour Technol ; 382: 129131, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37182679

ABSTRACT

Many industrial wastewaters contain an appreciable amount of toxic copper (Cu(II)) that needs to be properly treated before discharging into receiving water body. Adsorption can effectively remove Cu(II) with optimized parameters. This study investigates the critical pyrolysis parameters of biochar derived from agricultural waste. Optimized biochar showed maximum Cu(II) adsorption capacity of 60.7, 36.8, and 35.5 mg g-1 by PLB, SBB, and CWB at pyrolysis temperatures of 555 ℃, 559 ℃, 507 ℃, respectively, compared with commercial activated carbon (CAC, 40.8 mg g-1). Surface characterization confirmed surface complexation, electrostatic interaction, and cation exchange capacity as Cu(II) removal mechanisms. The presence of humic acid reduced the Cu(II) removal of both CAC and optimized biochars. Optimized PLB displayed high reusability (87% Cu(II) removal efficiency) after five consecutive cycles using pressure cooker regeneration. With excellent Cu(II) adsorption capacity and reusability, the investigated biochars show high applicability potential to Cu(II)-laden wastewater treatment.


Subject(s)
Ananas , Saccharum , Water Pollutants, Chemical , Cellulose , Zea mays , Adsorption , Charcoal , Copper
2.
Plants (Basel) ; 12(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36986899

ABSTRACT

The essential metals Cu, Zn, and Fe are involved in many activities required for normal and stress responses in plants and their microbiomes. This paper focuses on how drought and microbial root colonization influence shoot and rhizosphere metabolites with metal-chelation properties. Wheat seedlings, with and without a pseudomonad microbiome, were grown with normal watering or under water-deficit conditions. At harvest, metal-chelating metabolites (amino acids, low molecular weight organic acids (LMWOAs), phenolic acids, and the wheat siderophore) were assessed in shoots and rhizosphere solutions. Shoots accumulated amino acids with drought, but metabolites changed little due to microbial colonization, whereas the active microbiome generally reduced the metabolites in the rhizosphere solutions, a possible factor in the biocontrol of pathogen growth. Geochemical modeling with the rhizosphere metabolites predicted Fe formed Fe-Ca-gluconates, Zn was mainly present as ions, and Cu was chelated with the siderophore 2'-deoxymugineic acid, LMWOAs, and amino acids. Thus, changes in shoot and rhizosphere metabolites caused by drought and microbial root colonization have potential impacts on plant vigor and metal bioavailability.

3.
Environ Toxicol Chem ; 37(10): 2619-2632, 2018 10.
Article in English | MEDLINE | ID: mdl-29978493

ABSTRACT

The impact of copper oxide nanoparticles (CuONPs) on crop production is dependent on the biogeochemistry of Cu in the rooting zone of the plant. The present study addressed the metabolites in wheat root exudates that increased dissolution of CuONPs and whether solubility correlated with Cu uptake into the plant. Bread wheat (Triticum aestivum cv. Dolores) was grown for 10 d with 0 to 300 mg Cu/kg as CuONPs in sand, a matrix deficient in Fe, Zn, Mn, and Cu for optimum plant growth. Increased NP doses enhanced root exudation, including the Cu-complexing phytosiderophore, 2'-deoxymugineic acid (DMA), and corresponded to greater dissolution of the CuONPs. Toxicity, observed as reduced root elongation, was attributable to a combination of CuONPs and dissolved Cu complexes. Geochemical modeling predicted that the majority of the solution phase Cu was complexed with citrate at low dosing or DMA at higher dosing. Altered biogeochemistry within the rhizosphere correlated with bio-responses via exudate type, quantity, and metal uptake. Exposure of wheat to CuONPs led to dose-dependent decreases in Fe, Ca, Mg, Mn, and K in roots and shoots. The present study is relevant to growth of a commercially important crop, wheat, in the presence of CuONPs as a fertilizer, fungicide, or pollutant. Environ Toxicol Chem 2018;37:2619-2632. © 2018 SETAC.


Subject(s)
Copper/toxicity , Plant Exudates/metabolism , Plant Roots/metabolism , Rhizosphere , Silicon Dioxide/chemistry , Biological Availability , Carbon/analysis , Metabolome , Nanoparticles/toxicity , Organic Chemicals/analysis , Plant Roots/drug effects , Plant Shoots/drug effects , Plant Shoots/metabolism , Porosity , Principal Component Analysis , Solubility , Triticum/drug effects , Triticum/growth & development
4.
J Agric Food Chem ; 66(26): 6513-6524, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-28481096

ABSTRACT

As the world population increases, strategies for sustainable agriculture are needed to fulfill the global need for plants for food and other commercial products. Nanoparticle formulations are likely to be part of the developing strategies. CuO and ZnO nanoparticles (NPs) offer potential as fertilizers, as they provide bioavailable essential metals, and as pesticides, because of dose-dependent toxicity. Effects of these metal oxide NPs on rhizosphere functions are the focus of this review. These NPs at doses of ≥10 mg metal/kg change the production of key metabolites involved in plant protection in a root-associated microbe, Pseudomonas chlororaphis O6. Altered synthesis occurs in the microbe for phenazines, which function in plant resistance to pathogens, the pyoverdine-like siderophore that enhances Fe bioavailability in the rhizosphere and indole-3-acetic acid affecting plant growth. In wheat seedlings, reprogramming of root morphology involves increases in root hair proliferation (CuO NPs) and lateral root formation (ZnO NPs). Systemic changes in wheat shoot gene expression point to altered regulation for metal stress resilience as well as the potential for enhanced survival under stress commonly encountered in the field. These responses to the NPs cross kingdoms involving the bacteria, fungi, and plants in the rhizosphere. Our challenge is to learn how to understand the value of these potential changes and successfully formulate the NPs for optimal activity in the rhizosphere of crop plants. These formulations may be integrated into developing practices to ensure the sustainability of crop production.


Subject(s)
Copper/pharmacology , Crops, Agricultural/drug effects , Zinc Oxide/pharmacology , Copper/chemistry , Crop Production , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , Fertilizers/analysis , Metal Nanoparticles/chemistry , Soil Microbiology , Zinc Oxide/chemistry
5.
J Microbiol Methods ; 92(2): 135-44, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23201484

ABSTRACT

Traditional microscopy methods for the detection and quantification of Cryptosporidium parvum in soil matrices are time-consuming, labor-intensive, and lack sensitivity and specificity. This research focused on developing a qPCR protocol for the sensitive and specific detection and quantification of C. parvum in natural soil matrices and soil-water extracts. The physico-chemical parameters - lysis media, number of thermal shocks and thawing temperatures - controlling DNA extraction efficiency were investigated. Experimental results identified oocyst age as a critical parameter affecting oocyst disruption and quantification. The most efficient oocyst disruption method for C. parvum oocysts regardless of their age was established as 5 thermal shocks with thawing at 65°C in Tris-EDTA (TE) buffer. In addition to the purification columns used to remove PCR inhibitors present in environmental matrices, a combination of 3mM MgCl(2) and 600ng/µl BSA yielded the highest amplicon yield for both young and aged oocysts. Sucrose flotation was determined to be a better oocyst isolation method than two-phase flotation. The optimized parameters for DNA extraction and the qPCR assay resulted in very specific and sensitive detection of C. parvum. Minimum detection limits were 0.667 for young C. parvum oocysts and 6.67 for aged C. parvum oocysts per PCR reaction. The accuracy of the detections and quantifications was 0.999. Protocol performance was tested in contrasting soil samples and soil-water extract samples on the basis of percentage of recovery (PR) values. Depending on the number of oocysts used to inoculate the samples, the average PR values ranged from 7.2 to 43.5%, 29.3-52.5%, and 11.5-60.8% for Trenton, Greenson, and Sparta soil-water extracts, respectively, and 12.1-77% for DI water. PR values ranged from 4.3% to 107.8% for Trenton, Greenson and Sparta soil samples.


Subject(s)
Cryptosporidium parvum/isolation & purification , Parasite Load/methods , Real-Time Polymerase Chain Reaction/methods , Soil/parasitology , Sensitivity and Specificity , Specimen Handling/methods
6.
J Contam Hydrol ; 118(3-4): 184-98, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-21056511

ABSTRACT

To investigate the coupled effects of solution chemistry and hydrodynamics on the mobility of quantum dot (QD) nanoparticles in the vadose zone, laboratory scale transport experiments involving single and/or sequential infiltrations of QDs in unsaturated and saturated porous media, and computations of total interaction and capillary potential energies were performed. As ionic strength increased, QD retention in the unsaturated porous media increased; however, this retention was significantly suppressed in the presence of a non-ionic surfactant in the infiltration suspensions as indicated by surfactant enhanced transport of QDs. In the vadose zone, the non-ionic surfactant limited the formation of QD aggregates, enhanced QD mobility and transport, and lowered the solution surface tension, which resulted in a decrease in capillary forces that not only led to a reduction in the removal of QDs, but also impacted the vadose zone flow processes. When chemical transport conditions were favorable (ionic strength of 5 × 10(-4)M and 5 × 10(-3)M, or ionic strengths of 5 × 10(-2)M and 0.5M with surfactant), the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were meso-scale processes, where infiltration by preferential flow results in the rapid transport of QDs. When chemical transport conditions were unfavorable (ionic strength of 5 × 10(-2)M and 0.5M) the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were pore-scale processes governed by gas-water interfaces (GWI) that impact the mobility of QDs. The addition of surfactant enhanced the transport of QDs both in favorable and unfavorable chemical transport conditions. The mobility and retention of QDs was controlled by interaction and capillary forces, with the latter being the most influential. GWI were found to be the dominant mechanism and site for QD removal compared with solid-water interfaces (SWI) and pore straining. Additionally, ripening phenomena were demonstrated to enhance QDs removal or retention in porous media and to be attenuated by the presence of surfactant.


Subject(s)
Gases/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Quantum Dots , Water/chemistry , Hydrodynamics
7.
Environ Sci Technol ; 43(5): 1354-9, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19350903

ABSTRACT

The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4-5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50-60 nm at pH approximately 4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8-8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084-0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCI suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 microm optical limit of the microscope to tens of micrometers in diameter.


Subject(s)
Cations, Divalent/chemistry , Cations, Monovalent/chemistry , Nanoparticles/chemistry , Titanium/chemistry , Environment , Hydrogen-Ion Concentration , Kinetics , Nanoparticles/ultrastructure , Osmolar Concentration , Soil , Suspensions , Time Factors
8.
Environ Sci Technol ; 41(18): 6343-9, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17948777

ABSTRACT

The response of microorganisms to metal contamination of soils varies significantly from one investigation to another. One explanation is that metals are heterogeneously distributed at spatial scales relevant to microbes and that microoorganisms are able to avoid zones of intense contamination. This article aims to assess the microscale distribution of Cu in a vineyard soil. The spatial distribution of Cu was measured at two resolutions (0.3 mm and 20 microm) in thin sections of the surface 4 cm of undisturbed soil by electron microprobe and synchrotron X-ray microfluo-rescence spectroscopy. Bulk physicochemical analyses of Cu, pH, organic matter, texture, and mineralogy were performed. The results indicate that the Cu distribution is strongly heterogeneous at both scales of observation. Entire regions of the thin sections are virtually devoid of Cu, whereas highly localized "hotspots" have Cu signal intensities thousands of times higher than background. The distribution of Rb, or Al and Si, indicators of clay minerals, or Fe (iron (hydr)oxides), show that Cu is not preferentially associated with these mineral phases. Instead, Cu hotspots are associated with particulate organic matter. These observations suggest modification of current sampling protocols, and design of ecotoxicological experiments involving microorganisms, for contaminated soils.


Subject(s)
Copper/analysis , Electron Probe Microanalysis/methods , Soil/analysis , Spectrometry, X-Ray Emission/methods , Vitis/growth & development , Copper/chemistry , Ecosystem , Environmental Monitoring/methods , Fluorescence , Soil Pollutants/analysis , Soil Pollutants/chemistry
9.
Environ Sci Technol ; 41(23): 8056-61, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-18186337

ABSTRACT

The fate of organic herbicides applied to agricultural fields may be affected by other soil amendments, such as copper applied as a fungicide. The effect of copper on the leaching of diuron and glyphosate through a granitic and a calcareous soil was studied in the laboratory using sieved-soil columns. Each soil was enriched with copper sulfate to obtain soil copper concentrations of 125, 250, 500, and 1000 mg kg(-1). Glyphosate leaching was influenced by soil pH and copper concentration, whereas diuron leaching was not. In the calcareous soil, glyphosate leaching decreased as copper levels increased from 17 mg kg(-1) (background) to 500 mg kg(-1). In the granitic soil, glyphosate leaching increased as copper levels increased from 34 mg kg(-1) (background) to 500 mg kg(-1). The shapes of the copper elution curves in presence of glyphosate were similar to shapes of the glyphosate curves, suggesting the formation of Cu-glyphosate complexes that leach through the soil. Soil copper concentration does not influence diuron leaching. In contrast, increasing copper concentrations reduces glyphosate leaching through calcareous soils, and conversely, increases glyphosate leaching through granitic soils. Our findings suggest that the risk of groundwater contamination by glyphosate increases in granitic soils with elevated copper concentrations.


Subject(s)
Copper/analysis , Diuron/analysis , Glycine/analogs & derivatives , Soil Pollutants/analysis , Soil/analysis , Adsorption , Copper/chemistry , Diuron/chemistry , Drug Interactions , Environmental Monitoring/methods , Glycine/analysis , Glycine/chemistry , Herbicides/analysis , Herbicides/chemistry , Protons , Soil Pollutants/chemistry , Glyphosate
10.
Environ Toxicol Chem ; 24(10): 2435-44, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16268145

ABSTRACT

Until recently, there were no techniques capable of direct observation of the microscale locations where nonpolar organic compounds accumulate when associated with natural geosorbents. The ability of electron paramagnetic resonance (EPR) spectroscopy to monitor and elucidate directly the different molecular-scale environments of paramagnetic spin probes has been demonstrated lately in model soils, yet it remains untested in complex systems. In this general context, the present investigation was aimed at assessing the extent to which EPR could be used to monitor the sorption of 4-hydroxy-2,2,6,6-tetramethyl-piperidinyloxy benzoate (TEMPO benzoate), a hydrophobic spin probe, on a smectite (hectorite), two humic acids, and their complexes in the presence or absence of aluminum hydroxide. Results demonstrate that EPR is able to monitor easily adsorption on these sorbents in batch-style experiments. Distribution coefficient (Kd) values of 455.4 and 483.1 ml/g were found for the adsorption of TEMPO benzoate on hectorite-humic acids complexes, compared to respective Kd values of 46 and 147 ml/g predicted solely on the basis of the mass of humic acids present in the complexes. These observations confirm the significant role of hectorite for the sorption of hydrophobic compounds, together with humic acids, contrary to common belief that emphasizes the almost exclusive sorptive role of organic matter. In addition, for the first time, EPR is able to provide evidence that hydrophobic molecules in the presence of geosorbents can segregate in multimolecular clusters that are in equilibrium with aqueous probe concentrations below the probe's solubility threshold. Possible consequences of this clustering process in terms of the fate and transport of hydrophobic compounds in subsurface environments are discussed.


Subject(s)
Humic Substances/analysis , Silicates/analysis , Adsorption , Aluminum Hydroxide/chemistry , Electron Spin Resonance Spectroscopy , Environmental Monitoring/methods , Silicates/chemistry , Soil Pollutants/analysis , Solubility
11.
Environ Pollut ; 138(2): 250-9, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15951080

ABSTRACT

The herbicide diuron is frequently applied to vineyard soils in Burgundy, along with repeated treatments with Bordeaux mixture (a blend of copper sulfate and calcium hydroxide) that result in elevated copper concentrations. Cu could in principle affect the fate and transport of diuron or its metabolites in the soil either directly by complexation or indirectly by altering the populations or activity of microbes involved in their degradation. To assess the effect of high Cu concentrations on diuron transport, an experiment was designed with ten undisturbed columns of calcareous and acidic soils contaminated with 17--509 mg kg(-1) total Cu (field-applied). Grass was planted on three columns. Diuron was applied to the soils in early May and in-ground lysimeters were exposed to outdoor conditions until November. Less than 1.2% of the diuron applied was found in the leachates as diuron or its metabolites. Higher concentrations were found in the effluents from the grass-covered columns (0.1--0.45%) than from the bare-soil columns (0.02--0.14%), and they were correlated with increases in dissolved organic carbon. The highest amounts of herbicide were measured in acidic-soil column leachates (0.98--1.14%) due to the low clay and organic matter contents of these soils. Cu also leached more readily through the acidic soils (32.8--1042 microg) than in the calcareous soils (9.5--63.4 microg). Unlike in the leachates, the amount of diuron remaining in the soils at the end of the experiment was weakly related to the Cu concentrations in the soils.


Subject(s)
Agriculture , Diuron/analysis , Environmental Pollution , Herbicides/analysis , Soil Pollutants/analysis , Wine , Copper , Environmental Monitoring/methods , Fungicides, Industrial , Humic Substances , Models, Theoretical , Poaceae , Soil , Water Movements
12.
Sci Total Environ ; 345(1-3): 191-205, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15919539

ABSTRACT

Silver (Ag) and thallium (Tl) are nonessential elements that can be highly toxic to a number of biota even when present in the environment at trace levels. In spite of that, the literature on the chemistry and fate of Ag and Tl in soils is extremely scanty. In that context, the key objective of this research was to compare the sorption characteristics of trace amounts of Ag and Tl on a range of soils and minerals. A second objective was to determine the extent to which the composition and surface chemistry of the sorbents, as well as other environmental factors (simulated acid rain application and the presence of competing ions like K+ and NH4+) influence the sorption and lability of Ag and Tl. To this end, short-term and long-term sorption isotherms were generated under batch conditions for trace levels of Ag and Tl onto three illite-rich mineral soils from central New York (silt loam and fine sandy loam), a peaty-muck soil drained for agricultural use, and soil minerals (ferrihydrite and birnessite). Silver sorbed more strongly than thallium to all the soils. The peaty-muck soil sorbed Ag more strongly than the mineral soils, confirming that silver sorption to soils is dominated by soil organic matter either through exchange or complexation. The organic matter-rich soil's retention of Tl, however, was similar to that of the sandy soil. Amounts of Ag and Tl sorbed to the mineral soils increased after a 1-year incubation period. Whereas Ag sorption to the peaty-muck soil also increased with time, Tl sorption was unaffected. Short batch studies indicated that high amounts of Tl sorb to birnessite (30% by mass). However, subsequent X-ray diffraction (XRD) analysis of the solid did not detect the presence of any Tl3+ as Tl2O3 on the MnO4. In contrast, TlI was relatively poorly sorbed on noncrystalline ferrihydrite at pH 5.1 (1.5% by mass). Thus, Mn oxides may play a role in Tl retention by soils; whereas, contrary to previous reports, iron oxides do not effectively sorb Tl. Acid rain and addition of potassium (K+) and ammonium (NH4+) as competing ions had no long-term effect on Ag or Tl sorption. Thallium remaining in the all the batch sorption solutions, as determined by flame atomic absorption spectroscopy (FAAS) and differential pulse anodic stripping voltametry (DPASV), was completely labile, which may have important environmental consequences.


Subject(s)
Environmental Monitoring , Silver/analysis , Soil Pollutants/analysis , Soil/analysis , Thallium/analysis , Adsorption , New York , Potassium Compounds/chemistry , Quaternary Ammonium Compounds/chemistry , Soil/standards
13.
Environ Pollut ; 135(1): 1-9, 2005 May.
Article in English | MEDLINE | ID: mdl-15701387

ABSTRACT

Precipitation of highly insoluble metal sulfide minerals like acanthite (beta-Ag2S) or red cinnabar (HgS) is in principle an effective means to reduce metal availability and toxicity in contaminated soils. Unfortunately, experiments have shown that red cinnabar may be solubilized in the presence of dissolved organic matter or thiol ligands. To determine whether the same applies to acanthite, a laboratory synthesized beta-Ag2S mineral was incubated for up to 3 weeks in the presence of KNO3, dissolved humic acids, cysteine, methionine and thiosulfate. XPS analysis identified Ag2O (52%), Ag2SO4 (8%) and Ag2S (40%) on the particle surfaces. Ag was released into solution in the presence of KNO3 and methionine, presumably from mixed-oxidation surface layers. Contrary to earlier results with cinnabar, however, humic acids reduced Ag concentrations in solution by about 75%, and cysteine and thiosulfate, each containing a free -SH functional group, almost completely suppressed Ag release into solution.


Subject(s)
Metals/chemistry , Mining , Soil Pollutants , Waste Management , Humans , Humic Substances , Mercury/chemistry , Mercury Compounds/chemistry , Metals/toxicity , Oxidation-Reduction , Silver/chemistry , Soil Pollutants/toxicity , Solubility , Sulfhydryl Compounds/chemistry
14.
Environ Sci Technol ; 38(21): 5584-90, 2004 Nov 01.
Article in English | MEDLINE | ID: mdl-15575275

ABSTRACT

Due to their relatively low solubility, lead-phosphate minerals may control Pb solution levels at a low value in natural environments. We reportthe solubility of Pb from two lead-orthophosphate mineral suspensions (beta-Pb9(PO4)6 and PbHPO4) after aging for 3 years. Lead (Pb2+) activity in the aged suspensions was compared to the activity calculated using the Ksp values of various Pb-PO4 minerals reported in the literature. We also determine the time-dependent dissolution of the aged lead-phosphate minerals by organic and inorganic ligands containing S-functional groups (cysteine, methionine, and thiosulfate) and by a soil extracted humic acid. We find the activity of Pb2+ in the aged lead-phosphate suspensions to be 1-2 orders of magnitude higher than predicted by the Ksp values reported in the literature. Disagreement between measured and Ksp-calculated activities has been reported in other investigations of Pb-PO4 minerals; we compiled some of the data and present them together with our results. Furthermore, the time-dependent dissolution experiments indicate that, in most cases, lead phosphates are partly dissolved in the presence of soluble ligands, i.e., model sulfides and humic acid. The soil-extracted humic acid enhanced the dissolution of Pb from the high pH (7.2) lead-phosphate (beta-Pb9(PO4)6) mineral while suppressing Pb dissolution from the low pH (3.8) lead-phosphate (PbHPO4) mineral. While the low molecularweight sulfur-containing ligands enhanced Pb dissolution, their effect was less pronounced. We conclude that (i) nonequilibrium conditions prevail in the mineral suspensions even after 3 years of aging; and (ii) soluble ligands present in soils, sediments, and natural waters can potentially dissolve Pb from lead-phosphate minerals; such ligands, then, may enhance the biological availability and mobility of Pb in the environment.


Subject(s)
Lead/chemistry , Minerals/chemistry , Soil Pollutants/analysis , Biological Availability , Carbon/chemistry , Humans , Humic Substances/analysis , Hydrogen-Ion Concentration , Lead/metabolism , Lead/toxicity , Ligands , Models, Biological , Organic Chemicals/chemistry , Solubility , Sulfhydryl Compounds/chemistry , Time Factors , X-Ray Diffraction
16.
Water Res ; 38(14-15): 3147-54, 2004.
Article in English | MEDLINE | ID: mdl-15276730

ABSTRACT

The aqueous-phase concentration of an organic pollutant found in a subsurface environment is often assumed to be its bioavailable concentration. However, the aqueous-phase concentration does not adequately reflect the dynamics of contaminant availability to microbes in flow-through systems. This paper assesses the effects of interacting processes such as sorption, biodegradation, and transport on contaminant bioavailability, and the fraction of the bioavailable contaminant that is taken up by microbes. The evolution of the bioavailable and uptake fractions is studied in two ways. Firstly, column experiments are conducted in which the introduced contaminant (pentachlorophenol, PCP) can flow through the columns, be consumed by microorganisms, or be sorbed by a solid matrix. Secondly, a phenomenological model (Flow/Sink/Reservoir model) that illustrates the dynamic nature of bioavailability and quantifies the uptake fraction is developed, based on a flow balance. Results show that after 60 h of sorption-limited bioavailability, the microorganisms induce desorption, so that the sorbed pool becomes bioavailable and bioavailability is limited by the PCP injection rate. A conclusion is drawn that the aqueous-phase concentration is a poor indicator of contaminant bioavailability to microbes.


Subject(s)
Models, Chemical , Pentachlorophenol/metabolism , Soil Pollutants/metabolism , Adsorption , Biodegradation, Environmental , Biological Availability , Chromatography/methods , Kinetics , Resins, Synthetic/chemistry , Silicon Dioxide/chemistry , Soil Microbiology
17.
Environ Pollut ; 122(1): 135-43, 2003.
Article in English | MEDLINE | ID: mdl-12535602

ABSTRACT

The combined effect of time and temperature on elemental release and speciation from a metal contaminated soil (Master Old Site, MOS) was investigated. The soil was equilibrated at 10, 28, 45, 70 and 90 degrees C for 2 days, 2 weeks, and 2 months in the laboratory. Dissolved organic carbon (DOC), total soluble elements (by ICP), and labile metals (by DPASV) were determined in the filtered (0.22 microm) supernatants. For the samples equilibrated at 90 degrees C, DOC fractions were size fractionated by filtration and centrifugation; a subsample was only centrifuged while another was also filtered through a 0.45 microm filter. Analyses of the supernatants (ICP, DPASV, DOC) were performed on all size fraction subsamples. Dissolved organic carbon (DOC) increased both with temperature and incubation time; however, metal behavior was not as uniform. In general, total soluble metal release (ICP) paralleled the behavior of DOC, increasing with both time and temperature, and confirming the importance of soil organic matter (SOM) in metal retention. Voltammetric analysis (dpasv) of Cu and Zn showed that very little of these metals remains labile in solution due, presumably, to complexation with dissolved organic matter. Labile concentrations of Cd, on the other hand, constituted a significant portion (50%) of total soluble Cd. Copper and Al increased in solution with time (up to 2 months) and temperature up to 70 degrees C; however, at 90 degrees C the soluble concentration declined sharply. The same behavior was observed after equilibration for longer periods of time (550 days) at lower temperatures (23 and 70 degrees C). While concentrations of labile Cu and total soluble Cu and Al increased in the unfiltered samples, the trend remained the same. DPASV analysis showing shifts in labile Cu complexes with temperature and time, together with the results from the unfiltered samples, lead to the hypothesis that Cu was complexing with large polymers that could form at the elevated temperature, and thus be removed from the analyzed solution. It is possible that Cu and Al released by SOM oxidation has re-sorbed or complexed to more recalcitrant organic matter or to mineral phases. Variations in the relative molecular size fractions present within the DOC pool produced by increased time and temperature may influence the element-DOC complexes present in solution and their behavior in soil environments.


Subject(s)
Metals, Heavy/metabolism , Organic Chemicals/metabolism , Soil Pollutants/metabolism , Soil , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL