Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Toxicol ; 21(2): 117-47, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16181768

ABSTRACT

The organic solvent trichloroethylene (TCE) is a metal degreasing agent and an intermediate in the production of fluorochemicals and polyvinyl chloride. TCE is also a common, persistent drinking water contaminant. Several epidemiological studies have alleged links between TCE exposure during pregnancy and offspring health problems including congenital heart defects (CHDs); however, the results of these studies are inconsistent, difficult to interpret, and involve several confounding factors. Similarly, the results of animal studies examining the potential of TCE to elicit cardiac anomalies have been inconsistent, and they have often been performed at doses far exceeding the highest levels ever reported in the drinking water. To determine what is known about the relationship between TCE and the incidence of CHDs, a comprehensive analysis of all available epidemiological data and animal studies was performed. Additionally, in vivo and in vitro studies examining possible mechanisms of action for TCE were evaluated. The specific types of heart defects alleged to have been caused by TCE in animal and human epidemiology studies were categorized by the morphogenetic process responsible for the defect in order to determine whether TCE might disrupt any specific developmental process. This analysis revealed that no single process was clearly affected by TCE, providing support that gestational TCE exposure does not increase the prevalence of CHDs. As a final evaluation, application of Hill's causality guidelines to the collective body of data revealed no indication of a causal link between gestational TCE exposure at environmentally relevant concentrations and CHDs.


Subject(s)
Heart Defects, Congenital/chemically induced , Heart Defects, Congenital/epidemiology , Solvents/toxicity , Trichloroethylene/toxicity , Water Pollutants, Chemical/toxicity , Water Supply/analysis , Adult , Animals , Female , Heart/drug effects , Heart/growth & development , Humans , Pregnancy
2.
Article in English | MEDLINE | ID: mdl-12852480

ABSTRACT

BACKGROUND: Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed to pregnant women. Some case-control studies have linked the NSAIDs aspirin and indomethacin with a risk of congenital abnormalities and low birthweight. High doses of aspirin produce developmental toxicity in rats (e.g., gastroschisis/umbilical hernia, diaphragmatic hernia [DH]) when administered during sensitive windows of development. Unlike other NSAIDs, aspirin irreversibly inhibits cyclooxygenases (COXs) 1 and 2. Hence, the developmental toxicity seen in rats after exposure to aspirin may be due to the irreversible inhibition of COX-1 and/or COX-2. If so, other NSAIDs, which act through a reversible inhibition of COX, may produce a weak developmental toxicity signal or no developmental toxicity signal when tested in preclinical models. To investigate this relationship, a comprehensive analysis of the NSAID developmental toxicity literature was undertaken to determine whether NSAIDs other than aspirin induce developmental anomalies similar to those elicited by aspirin. METHODS: Developmental toxicity studies were identified through literature searches of PubMed and TOXNET, and pregnancy outcome data were extracted and tabulated. By using a set of defined criteria, each study was evaluated for quality and assigned to one of five tiers. The relation between certain malformations and NSAID treatment was analyzed for the best studies (tiers 1-4) by using concurrent control data (Mantel-Haenszel and permutation tests) and by combining the concurrent control data with historical control data (chi2 test and permutation tests). RESULTS: A qualitative analysis of these data led to a focus on three types of malformations: DH, ventricular septal defects (VSDs), and midline defects (MDs). In rats, the incidences of VSD and MD were increased among fetuses treated with NSAIDs when compared with the concurrent controls. The extent of the increase was attenuated when the data from the aspirin studies were excluded from the analysis. There were no qualifying (i.e., tiers 1-4) aspirin studies conducted in rabbits, but the incidences of the three defects were increased over control incidences among non-aspirin NSAID-treated animals. Statistical analysis of these data was subsequently conducted. When tiers 1-4 were combined and compared with concurrent controls plus the most appropriate historical control database, the strongest associations were between NSAID treatment and VSD in rats, VSD in rabbits, and MD in rabbits. There also was some suggestion of an association between NSAID treatment and DH in rabbits. CONCLUSIONS: This analysis of the non-clinical NSAID literature demonstrated a possible association between exposure to NSAIDs and developmental anomalies. The anomalies were similar for aspirin and for other NSAIDs, but effects occurred at a much lower incidence with non-aspirin NSAIDs than previously reported with aspirin. Such a finding is consistent with the concept that reversible inhibition of COX-1 and/or COX-2 by other NSAIDs would produce weaker developmental toxicity signals than aspirin. However, there were limitations of the evaluated studies: (1) there were very few robust International Conference on Harmonization-compliant studies conducted with NSAIDs in the published literature; (2) many of the studies were conducted at doses well below the maximum tolerated dose (MTD), where effects are rarely seen; and (3) numerous studies were conducted above the MTD, where reduced numbers of fetuses hampered detection of low-incidence findings. Although weak associations were observed, these limitations prevented us from definitively determining the presence or absence of a developmental toxicity signal from the existing body of NSAID data. Further exploration of this hypothesis will require assessing the potential association in animal models by using dose levels centered around the MTD.


Subject(s)
Abnormalities, Drug-Induced/etiology , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Teratogens/toxicity , Adult , Animals , Animals, Laboratory , Cats , Cricetinae , Cyclooxygenase 1 , Cyclooxygenase Inhibitors/toxicity , Databases, Factual , Dogs , Female , Haplorhini , Humans , Isoenzymes/antagonists & inhibitors , Membrane Proteins , Mice , Pregnancy , Prostaglandin-Endoperoxide Synthases , Rabbits , Rats , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...