Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Anal Chem ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976499

ABSTRACT

Integration of optical components into microfluidic devices can enhance particle manipulations, separations, and analyses. We present a method to fabricate microscale diffractive lenses composed of aperiodically spaced concentric rings milled into a thin metal film to precisely position optical tweezers within microfluidic channels. Integrated thin-film microlenses perform the laser focusing required to generate sufficient optical forces to trap particles without significant off-device beam manipulation. Moreover, the ability to trap particles with unfocused laser light allows multiple optical traps to be powered simultaneously by a single input laser. We have optically trapped polystyrene particles with diameters of 0.5, 1, 2, and 4 µm over microlenses fabricated in chromium and gold films. Optical forces generated by these microlenses captured particles traveling at fluid velocities up to 64 µm/s. Quantitative trapping experiments with particles in microfluidic flow demonstrate size-based differential trapping of neutrally buoyant particles where larger particles required a stronger trapping force. The optical forces on these particles are identical to traditional optical traps, but the addition of a continuous viscous drag force from the microfluidic flow introduces tunable size selectivity across a range of laser powers and fluid velocities.

2.
Annu Rev Anal Chem (Palo Alto Calif) ; 17(1): 221-242, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608295

ABSTRACT

Single-particle (or digital) measurements enhance sensitivity (10- to 100-fold improvement) and uncover heterogeneity within a population (one event in 100 to 10,000). Many biological systems are significantly influenced by rare or infrequent events, and determining what species is present, in what quantity, and the role of that species is critically important to unraveling many questions. To develop these measurement systems, resistive-pulse sensing is used as a label-free, single-particle detection technique and can be combined with a range of functional elements, e.g., mixers, reactors, filters, separators, and pores. Virtually, any two-dimensional layout of the micro- and nanofluidic conduits can be envisioned, designed, and fabricated in the plane of the device. Multiple nanopores in series lead to higher-precision measurements of particle size, shape, and charge, and reactions coupled directly with the particle-size measurements improve temporal response. Moreover, other detection techniques, e.g., fluorescence, are highly compatible with the in-plane format. These integrated in-plane nanofluidic devices expand the toolbox of what is possible with single-particle measurements.

3.
Anal Chem ; 95(45): 16710-16716, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37916500

ABSTRACT

Extracellular vesicles (EVs) are cell-derived, naturally produced, membrane-bound nanoscale particles that are linked to cell-cell communication and the propagation of diseases. Here, we report the design and testing of in-plane nanofluidic devices for resistive-pulse measurements of EVs derived from bovine milk and human breast cancer cells. The devices were fabricated in plane with three nanopores in series to determine the particle volume and diameter, two pore-to-pore regions to measure the electrophoretic mobility and zeta potential, and an in-line filter to prevent cellular debris and aggregates from entering the nanopore region. Devices were tested with and without the channels coated with a short-chain PEG silane to minimize electroosmotic flow and permit an accurate measurement of the electrophoretic mobility and zeta potential of the EVs. To enhance throughput of EVs, vacuum was applied to the waste reservoir to increase particle frequencies up to 1000 min-1. The nanopores had cross-sections 200 nm wide and 200 nm deep and easily resolved EV diameters from 60 to 160 nm. EVs from bovine milk and human breast cancer cells had similar particle size distributions, but their zeta potentials differed by 2-fold, -8 ± 1 and -4 ± 1 mV, respectively.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Nanopores , Humans , Female , Electrophoresis , Electroosmosis
4.
Nanoscale Adv ; 5(7): 2045-2053, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36998654

ABSTRACT

Solving Maxwell's equations numerically to map electromagnetic fields in the vicinity of nanostructured metal surfaces can be a daunting task when studying non-periodic, extended patterns. However, for many nanophotonic applications such as sensing or photovoltaics it is often important to have an accurate description of the actual, experimental spatial field distributions near device surfaces. In this article, we show that the complex light intensity patterns formed by closely-spaced multiple apertures in a metal film can be faithfully mapped with sub-wavelength resolution, from near-field to far-field, in the form of a 3D solid replica of isointensity surfaces. The permittivity of the metal film plays a role in shaping of the isointensity surfaces, over the entire examined spatial range, which is captured by simulations and confirmed experimentally.

5.
J Am Chem Soc ; 145(4): 2322-2331, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36651799

ABSTRACT

For a virus-like particle (VLP) to serve as a delivery platform, the VLP must be able to release its cargo in response to a trigger. Here, we use a chemical biology approach to destabilize a self-assembling capsid for a subsequent triggered disassembly. We redesigned the dimeric hepatitis B virus (HBV) capsid protein (Cp) with two differentially addressable cysteines, C150 for reversibly crosslinking the capsid and C124 to react with a destabilizing moiety. The resulting construct, Cp150-V124C, assembles into icosahedral, 120-dimer VLPs that spontaneously crosslink via the C-terminal C150, leaving C124 buried at a dimer-dimer interface. The VLP is driven into a metastable state when C124 is reacted with the bulky fluorophore, maleimidyl BoDIPY-FL. The resulting VLP is stable until exposed to modest, physiologically relevant concentrations of reducing agent. We observe dissociation with FRET relaxation of polarization, size exclusion chromatography, and resistive-pulse sensing. Dissociation is slow, minutes to hours, with a characteristic lag phase. Mathematical modeling based on the presence of a nucleation step predicts disassembly dynamics that are consistent with experimental observations. VLPs transfected into hepatoma cells show similar dissociation behavior. These results suggest a generalizable strategy for designing a VLP that can release its contents in an environmentally responsive reaction.


Subject(s)
Capsid , Vaccines, Virus-Like Particle , Capsid/chemistry , Capsid Proteins/chemistry , Hepatitis B virus/chemistry , Cell Line , Vaccines, Virus-Like Particle/analysis
6.
J Sep Sci ; 45(17): 3348-3361, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35819141

ABSTRACT

Structural isomers of sialylated N-glycans contribute to the diversity of the N-glycome and to a range of biological functions. Sialyl linkage isomers can be readily distinguished by mass spectrometry with mass differences between α2,3- and α2,6-linkages generated by a two-step sialic acid linkage-specific alkylamidation. To improve the identification of N-glycans from complex mixtures, we added a delactonization step after the first alkylamidation step, which regenerates negatively charged carboxylic acids on α2,3-sialic acids. N-glycan isomers with α2,3-sialic acids are then fractionated by ion-exchange chromatography prior to the second alkylamidation step. With this modified alkylamidation method, sialylated N-glycans were enriched and stabilized for structural characterization by capillary electrophoresis-mass spectrometry and tandem mass spectrometry. We identified 52 sialylated N-glycan structures, including 107 linkage isomers, in human serum and confirmed the presence of positional isomers of specific sialyl linkage isomers. Due to the reduced sample complexity after ion-exchange fractionation and CE separation, substructural features of N-glycans were rapidly evaluated and included core- and antenna-fucosylation and poly-lactosamine.


Subject(s)
Polysaccharides , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Humans , Isomerism , Polysaccharides/chemistry , Sialic Acids/chemistry , Tandem Mass Spectrometry/methods
7.
ACS Nano ; 16(5): 7352-7360, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35500295

ABSTRACT

Resistive-pulse sensing with solid-state nanopores is a sensitive, label-free technique for analyzing single molecules in solution. To add functionality to resistive-pulse measurements, direct coupling of the nanopores to other pores and nanoscale fluidic elements, e.g., reactors, separators, and filters, in the same device is an important next step. One approach is monolithic fabrication of the fluidic elements in the plane of the substrate, but methods to generate pores with circular cross sections are needed to improve sensing performance with in-plane devices. Here, we report a fabrication method that directly patterns nanopores with circular cross sections in series and in plane with the substrate. A focused ion beam instrument is used to mill a lamella in a nanochannel and, subsequently, bore a nanopore through the lamella. The diameter and geometry of the nanopore are controlled by the current and dose of the ion beam and by the tilt angle and thickness of the lamella. We fabricated devices with vertical and tilted lamellae and nanopores with diameters from 40 to 90 nm in cylindrical and conical geometries. To test device performance, we conducted resistive-pulse measurements of hepatitis B virus capsids. Current pulses from T = 3 capsids (∼31 nm diameter) and T = 4 capsids (∼35 nm diameter) were well resolved and exhibited relative pulse amplitudes (Δi/i) up to 5 times higher than data obtained on nanopores with rectangular cross sections. For smaller pore diameters (<45 nm), which approach the diameters of the capsids, a dramatic increase in the pulse amplitude was observed for both T = 3 and T = 4 capsids. Two and three pores fabricated in series further improved the resolution between the relative pulse amplitude distributions for the T = 3 and T = 4 capsids by up to 2-fold.


Subject(s)
Nanopores , Capsid/chemistry , Nanotechnology , Hepatitis B virus/chemistry
8.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35135874

ABSTRACT

Bacteria use surface appendages called type IV pili to perform diverse activities including DNA uptake, twitching motility, and attachment to surfaces. The dynamic extension and retraction of pili are often required for these activities, but the stimuli that regulate these dynamics remain poorly characterized. To address this question, we study the bacterial pathogen Vibrio cholerae, which uses mannose-sensitive hemagglutinin (MSHA) pili to attach to surfaces in aquatic environments as the first step in biofilm formation. Here, we use a combination of genetic and cell biological approaches to describe a regulatory pathway that allows V. cholerae to rapidly abort biofilm formation. Specifically, we show that V. cholerae cells retract MSHA pili and detach from a surface in a diffusion-limited, enclosed environment. This response is dependent on the phosphodiesterase CdpA, which decreases intracellular levels of cyclic-di-GMP to induce MSHA pilus retraction. CdpA contains a putative nitric oxide (NO)-sensing NosP domain, and we demonstrate that NO is necessary and sufficient to stimulate CdpA-dependent detachment. Thus, we hypothesize that the endogenous production of NO (or an NO-like molecule) in V. cholerae stimulates the retraction of MSHA pili. These results extend our understanding of how environmental cues can be integrated into the complex regulatory pathways that control pilus dynamic activity and attachment in bacterial species.


Subject(s)
Fimbriae Proteins/metabolism , Fimbriae, Bacterial/physiology , Nitric Oxide/pharmacology , Vibrio cholerae/drug effects , Vibrio cholerae/metabolism , Bacterial Adhesion/drug effects , Bacterial Adhesion/physiology , Fimbriae Proteins/genetics , Gene Expression Regulation, Bacterial , Vibrio cholerae/genetics
9.
Anal Chem ; 94(2): 985-992, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34932317

ABSTRACT

Virus assembly and disassembly are critical steps in the virus lifecycle; however, virus disassembly is much less well understood than assembly. For hepatitis B virus (HBV) capsids, disassembly of the virus capsid in the presence of guanidine hydrochloride (GuHCl) exhibits strong hysteresis that requires additional chemical energy to initiate disassembly and disrupt the capsid structure. To study disassembly of HBV capsids, we mixed T = 4 HBV capsids with 1.0-3.0 M GuHCl, monitored the reaction over time by randomly selecting particles, and measured their size with resistive-pulse sensing. Particles were cycled forward and backward multiple times to increase the observation time and likelihood of observing a disassembly event. The four-pore device used for resistive-pulse sensing produces four current pulses for each particle during translocation that improves tracking and identification of single particles and increases the precision of particle-size measurements when pulses are averaged. We studied disassembly at GuHCl concentrations below and above denaturing conditions of the dimer, the fundamental unit of HBV capsid assembly. As expected, capsids showed little disassembly at low GuHCl concentrations (e.g., 1.0 M GuHCl), whereas at higher GuHCl concentrations (≥1.5 M), capsids exhibited disassembly, sometimes as a complex series of events. In all cases, disassembly was an accelerating process, where capsids catastrophically disassembled within a few 100 ms of reaching critical stability; disassembly rates reached tens of dimers per second just before capsids fell apart. Some disassembly events exhibited metastable intermediates that appeared to lose one or more trimers of dimers in a stepwise fashion.


Subject(s)
Capsid , Virion , Capsid/chemistry , Capsid Proteins/analysis , Hepatitis B virus/chemistry , Virion/chemistry , Virus Assembly
10.
Environ Pollut ; 287: 117637, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34182391

ABSTRACT

In toxicology, standard sigmoidal concentration-response curves are used to predict effects concentrations and set chemical regulations. However, current literature also establishes the existence of complex, bimodal concentration-response curves, as is the case for arsenic toxicity. This bimodal response has been observed at the molecular level, but not characterized at the whole organism level. This study investigated the effect of arsenic (sodium arsenite) on post-gastrulated zebrafish embryos and elucidated effects of bimodal concentration-responses on different phenotypic perturbations. Six hour post fertilized (hpf) zebrafish embryos were exposed to arsenic to 96 hpf. Hatching success, mortality, and morphometric endpoints were evaluated both in embryos with chorions and dechorionated embryos. Zebrafish embryos exhibited a bimodal response to arsenic exposure. Concentration-response curves for exposed embryos with intact chorions had an initial peak in mortality (88%) at 1.33 mM arsenic, followed by a decrease in toxicity (~20% mortality) at 1.75 mM, and subsequently peaked to 100% mortality at higher concentrations. To account for the bimodal response, two distinct concentration-response curves were generated with estimated LC10 values (and 95% CI) of 0.462 (0.415, 0.508) mM and 1.69 (1.58, 1.78) mM for the 'low concentration' and 'high concentration' peaks, respectively. Other phenotypic analyses, including embryo length, yolk and pericardial edema all produced similar concentration-response patterns. Tests with dechorionated embryos also resulted in a bimodal toxicity response but with lower LC10 values of 0.170 (0.120, 0.220) mM and 0.800 (0.60, 0842) mM, respectively. Similarities in bimodal concentration-responses between with-chorion and dechorionated embryos indicate that the observed effect was not caused by the chorion limiting arsenic availability, thus lending support to other studies such as those that hypothesized a conserved bimodal mechanism of arsenic interference with nuclear receptor activation.


Subject(s)
Arsenic , Zebrafish , Animals , Arsenic/toxicity , Chorion , Embryo, Nonmammalian
11.
J Bacteriol ; 203(18): e0024921, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34181483

ABSTRACT

During growth, bacteria increase in size and divide. Division is initiated by the formation of the Z-ring, a ring-like cytoskeletal structure formed by treadmilling protofilaments of the tubulin homolog FtsZ. FtsZ localization is thought to be controlled by the Min and Noc systems, and here we explore why cell division fails at high temperature when the Min and Noc systems are simultaneously mutated. Microfluidic analysis of a minD noc double mutant indicated that FtsZ formed proto-Z-rings at periodic interchromosome locations but that the rings failed to mature and become functional. Extragenic suppressor analysis indicated that a variety of mutations restored high temperature growth to the minD noc double mutant, and while many were likely pleiotropic, others implicated the proteolysis of the transcription factor Spx. Further analysis indicated that a Spx-dependent pathway activated the expression of ZapA, a protein that primarily compensates for the absence of Noc. In addition, an Spx-independent pathway reduced the length of the cytokinetic period, perhaps by increasing divisome activity. Finally, we provide evidence of an as-yet-unidentified protein that is activated by Spx and governs the frequency of polar division and minicell formation. IMPORTANCE Bacteria must properly position the location of the cell division machinery in order to grow, divide, and ensure each daughter cell receives one copy of the chromosome. In Bacillus subtilis, cell division site selection depends on the Min and Noc systems, and while neither is individually essential, cells fail to grow at high temperature when both are mutated. Here, we show that cell division fails in the absence of Min and Noc, due not to a defect in FtsZ localization but rather to a failure in the maturation of the cell division machinery. Suppressor mutations that restored growth were selected, and while some activated the expression of ZapA via the Spx stress response pathway, others appeared to directly enhance divisome activity.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/genetics , Cell Division/genetics , Mutation , Green Fluorescent Proteins
12.
mBio ; 12(1)2021 02 02.
Article in English | MEDLINE | ID: mdl-33531398

ABSTRACT

Bacteria that divide by binary fission form FtsZ rings at the geometric midpoint of the cell between the bulk of the replicated nucleoids. In Bacillus subtilis, the DNA- and membrane-binding Noc protein is thought to participate in nucleoid occlusion by preventing FtsZ rings from forming over the chromosome. To explore the role of Noc, we used time-lapse fluorescence microscopy to monitor FtsZ and the nucleoid of cells growing in microfluidic channels. Our data show that Noc does not prevent de novo FtsZ ring formation over the chromosome nor does Noc control cell division site selection. Instead, Noc corrals FtsZ at the cytokinetic ring and reduces migration of protofilaments over the chromosome to the future site of cell division. Moreover, we show that FtsZ protofilaments travel due to a local reduction in ZapA association, and the diffuse FtsZ rings observed in the Noc mutant can be suppressed by ZapA overexpression. Thus, Noc sterically hinders FtsZ migration away from the Z-ring during cytokinesis and retains FtsZ at the postdivisional polar site for full disassembly by the Min system.IMPORTANCE In bacteria, a condensed structure of FtsZ (Z-ring) recruits cell division machinery at the midcell, and Z-ring formation is discouraged over the chromosome by a poorly understood phenomenon called nucleoid occlusion. In B. subtilis, nucleoid occlusion has been reported to be mediated, at least in part, by the DNA-membrane bridging protein, Noc. Using time-lapse fluorescence microscopy of cells growing in microchannels, we show that Noc neither protects the chromosome from proximal Z-ring formation nor determines the future site of cell division. Rather, Noc plays a corralling role by preventing protofilaments from leaving a Z-ring undergoing cytokinesis and traveling over the nucleoid.


Subject(s)
Bacillus subtilis/physiology , Bacterial Proteins/physiology , Cytokinesis/physiology , Cytoskeletal Proteins/physiology , Bacillus subtilis/cytology , Bacillus subtilis/genetics , Chromosomes, Bacterial , Microfluidic Analytical Techniques
13.
Nat Commun ; 12(1): 589, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500404

ABSTRACT

Symmetrical protein complexes are ubiquitous in biology. Many have been re-engineered for chemical and medical applications. Viral capsids and their assembly are frequent platforms for these investigations. A means to create asymmetric capsids may expand applications. Here, starting with homodimeric Hepatitis B Virus capsid protein, we develop a heterodimer, design a hierarchical assembly pathway, and produce asymmetric capsids. In the heterodimer, the two halves have different growth potentials and assemble into hexamers. These preformed hexamers can nucleate co-assembly with other dimers, leading to Janus-like capsids with a small discrete hexamer patch. We can remove the patch specifically and observe asymmetric holey capsids by cryo-EM reconstruction. The resulting hole in the surface can be refilled with fluorescently labeled dimers to regenerate an intact capsid. In this study, we show how an asymmetric subunit can be used to generate an asymmetric particle, creating the potential for a capsid with different surface chemistries.


Subject(s)
Capsid Proteins/metabolism , Capsid/ultrastructure , Hepatitis B virus/physiology , Models, Molecular , Virus Assembly , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/isolation & purification , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Hepatitis B virus/ultrastructure , Protein Multimerization/physiology , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure
14.
ACS Nano ; 14(10): 12732-12748, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32931251

ABSTRACT

Bidirectional cell-cell communication involving exosome-borne cargo such as miRNA has emerged as a critical mechanism for wound healing. Unlike other shedding vesicles, exosomes selectively package miRNA by SUMOylation of heterogeneous nuclear ribonucleoproteinA2B1 (hnRNPA2B1). In this work, we elucidate the significance of exosome in keratinocyte-macrophage crosstalk following injury. Keratinocyte-derived exosomes were genetically labeled with GFP-reporter (Exoκ-GFP) using tissue nanotransfection (TNT), and they were isolated from dorsal murine skin and wound-edge tissue by affinity selection using magnetic beads. Surface N-glycans of Exoκ-GFP were also characterized. Unlike skin exosome, wound-edge Exoκ-GFP demonstrated characteristic N-glycan ions with abundance of low-base-pair RNA and was selectively engulfed by wound macrophages (ωmϕ) in granulation tissue. In vitro addition of wound-edge Exoκ-GFP to proinflammatory ωmϕ resulted in conversion to a proresolution phenotype. To selectively inhibit miRNA packaging within Exoκ-GFPin vivo, pH-responsive keratinocyte-targeted siRNA-hnRNPA2B1 functionalized lipid nanoparticles (TLNPκ) were designed with 94.3% encapsulation efficiency. Application of TLNPκ/si-hnRNPA2B1 to the murine dorsal wound-edge significantly inhibited expression of hnRNPA2B1 by 80% in epidermis compared to the TLNPκ/si-control group. Although no significant difference in wound closure or re-epithelialization was observed, the TLNPκ/si-hnRNPA2B1 treated group showed a significant increase in ωmϕ displaying proinflammatory markers in the granulation tissue at day 10 post-wounding compared to the TLNPκ/si-control group. Furthermore, TLNPκ/si-hnRNPA2B1 treated mice showed impaired barrier function with diminished expression of epithelial junctional proteins, lending credence to the notion that unresolved inflammation results in leaky skin. This work provides insight wherein Exoκ-GFP is recognized as a major contributor that regulates macrophage trafficking and epithelial barrier properties postinjury.


Subject(s)
Exosomes , Animals , Keratinocytes , Macrophages , Mice , Skin , Wound Healing
15.
Anal Chem ; 92(21): 14357-14365, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32985870

ABSTRACT

Exosomes represent a class of secreted biological vesicles, which have recently gained attention due to their function as intertissue and interorganism transporters of genetic materials, small molecules, lipids, and proteins. Although the protein constituents of these exosomes are often glycosylated, a large-scale characterization of the glycoproteome has not yet been completed. This study identified 3144 unique glycosylation events belonging to 378 glycoproteins and 604 unique protein sites of glycosylation. With these data, we investigated the level of glycan microheterogeneity within the urinary exosomes, finding on average 5.9 glycans per site. The glycan family abundance on individual proteins showed subtle differences, providing an additional level of molecular characterization compared to the unmodified proteome. Finally, we show protein site-specific changes in regard to the common urinary glycoprotein, uromodulin. While uromodulin is an individual case, these same site-specific analyses provide a way forward for developing diagnostic glycoprotein biomarkers with urine as a noninvasive biological fluid. This study represents an important first step in understanding the functional urinary glycoproteome.


Subject(s)
Exosomes/metabolism , Glycoproteins/metabolism , Glycoproteins/urine , Proteomics/methods , Urine/cytology , Glycosylation , Humans
16.
mBio ; 11(2)2020 03 17.
Article in English | MEDLINE | ID: mdl-32184253

ABSTRACT

A microfluidic system coupled with fluorescence microscopy is a powerful approach for quantitative analysis of bacterial growth. Here, we measure parameters of growth and dynamic localization of the cell division initiation protein FtsZ in Bacillus subtilis Consistent with previous reports, we found that after division, FtsZ rings remain at the cell poles, and polar FtsZ ring disassembly coincides with rapid Z-ring accumulation at the midcell. In cells mutated for minD, however, the polar FtsZ rings persist indefinitely, suggesting that the primary function of the Min system is in Z-ring disassembly. The inability to recycle FtsZ monomers in the minD mutant results in the simultaneous maintenance of multiple Z-rings that are restricted by competition for newly synthesized FtsZ. Although the parameters of FtsZ dynamics change in the minD mutant, the overall cell division time remains the same, albeit with elongated cells necessary to accumulate a critical threshold amount of FtsZ for promoting medial division. Finally, the minD mutant characteristically produces minicells composed of polar peptidoglycan shown to be inert for remodeling in the wild type. Polar peptidoglycan, however, loses its inert character in the minD mutant, suggesting that the Min system not only is important for recycling FtsZ but also may have a secondary role in the spatiotemporal regulation of peptidoglycan remodeling.IMPORTANCE Many bacteria grow and divide by binary fission in which a mother cell divides into two identical daughter cells. To produce two equally sized daughters, the division machinery, guided by FtsZ, must dynamically localize to the midcell each cell cycle. Here, we quantitatively analyzed FtsZ dynamics during growth and found that the Min system of Bacillus subtilis is essential to disassemble FtsZ rings after division. Moreover, a failure to efficiently recycle FtsZ results in an increase in cell size. Finally, we show that the Min system has an additional role in inhibiting cell wall turnover and contributes to the "inert" property of cell walls at the poles.


Subject(s)
Bacillus subtilis/growth & development , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Cytoskeletal Proteins/genetics , Peptidoglycan/metabolism , Bacillus subtilis/metabolism , Cell Division , Green Fluorescent Proteins
17.
Anal Chem ; 91(21): 13528-13537, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31539226

ABSTRACT

The study of exosomes has become increasingly popular due to their potentially important biological roles. Urine can be used as an effective source of exosomes for noninvasive investigations into the pathophysiological states of the urinary system, but first, detailed characterization of exosomal components in healthy individuals is essential. Here, we significantly extend the number of N-glycan compositions, including sulfated species, identified from urinary exosomes and determine the sialic acid linkages for many of those compositions. Capillary electrophoresis-mass spectrometry (CE-MS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify N-glycan and sulfated N-glycan compositions. Second, because the alteration of sialylation patterns has been previously implicated in various disease states, ion-exchange chromatography, microfluidic capillary electrophoresis (CE), and MALDI-MS were adopted to resolve positional isomers of sialic acids. Structures of the sialyl-linkage isomers were assigned indirectly through α2-3 sialidase treatment and sialic acid linkage-specific alkylamidation (SALSA). In total, we have identified 219 N-glycan structures that include 175 compositions, 64 sialic acid linkage isomers, 26 structural isomers, and 27 sulfated glycans.


Subject(s)
Exosomes/chemistry , Polysaccharides/chemistry , Urine/chemistry , Carbohydrate Conformation , Chromatography, Liquid/methods , Electrophoresis, Capillary/methods , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry/methods
18.
ACS Infect Dis ; 5(5): 769-777, 2019 05 10.
Article in English | MEDLINE | ID: mdl-30616343

ABSTRACT

Self-assembly of virus capsids is a potential target for antivirals due to its importance in the virus lifecycle. Here, we investigate the effect of phenylpropenamide derivatives B-21 and AT-130 on the assembly of hepatitis B virus (HBV) core protein. Phenylpropenamides are widely believed to yield assembly of spherical particles resembling native, empty HBV capsids. Because the details of assembly can be overlooked with ensemble measurements, we performed resistive-pulse sensing on nanofluidic devices with four pores in series to characterize the size distributions of the products in real time. With its single particle sensitivity and compatibility with typical assembly buffers, resistive-pulse sensing is well-suited for analyzing virus assembly in vitro. We observed that assembly with B-21 and AT-130 produced a large fraction of partially complete virus particles that may be on-path, off-path, or trapped. For both B-21 and AT-130, capsid assembly was more sensitive to disruption under conditions where the interprotein association energy was low at lower salt concentrations. Dilution of the reaction solutions led to the rearrangement of the incomplete particles and demonstrated that these large intermediates may be on-path, but are labile, and exist in a frustrated dynamic equilibrium. During capsid assembly, phenylpropenamide molecules modestly increase the association energy of dimers, prevent intermediates from dissociating, and lead to kinetic trapping where the formation of too many capsids has been initiated, which results in both empty and incomplete particles.


Subject(s)
Antiviral Agents/pharmacology , Capsid/metabolism , Hepatitis B virus/drug effects , Phenylpropionates/chemistry , Virus Assembly/drug effects , Antiviral Agents/chemistry , Hepatitis B virus/physiology , Kinetics , Phenylpropionates/pharmacology , Virion
19.
J Am Chem Soc ; 141(3): 1251-1260, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30537810

ABSTRACT

Disruption of virus capsid assembly has compelling antiviral potential that has been applied to hepatitis B virus (HBV). HBV core protein assembly can be modulated by heteroaryldihydropyrimidines (HAPs), and such molecules are collectively termed core protein allosteric modulators (CpAMs). Although the antiviral effects of CpAMs are acknowledged, the mechanism of action remains an open question. Challenging aspects of characterizing misdirected assembly are the large size and nonuniform nature of the final particles. In this study of HBV assembly, we observed a competition between normative and CpAM-induced aberrant assembly with electron microscopy and resistive-pulse sensing on nanofluidic devices. This competition was a function of the strength of the association energy between individual core proteins, which is proportional to ionic strength. At strong association energy, assembly reactions primarily yielded morphologically normal HBV capsids, despite the presence of HAP-TAMRA. At weak association energy, HAP-TAMRA led to increased assembly product size and disrupted morphology. The smallest particles were T = 4 icosahedra, whereas the larger particles were defective spheres, ellipsoids, and bacilliform cylinders, with regions of T = 4 geometry interspersed with flat regions. Deviation from spherical geometry progressively increased with particle size, which is consistent with the interpretation of a competition between two alternative assembly pathways.


Subject(s)
Antiviral Agents/chemistry , Capsid/drug effects , Hepatitis B virus/drug effects , Pyrimidines/chemistry , Rhodamines/chemistry , Virus Assembly/drug effects , Hepatitis B virus/physiology , Osmolar Concentration , Particle Size , Sodium Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...