Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Regul Toxicol Pharmacol ; 122: 104892, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33592196

ABSTRACT

In 2019, the California Office of Environmental Health Hazard Assessment initiated a review of the carcinogenic hazard potential of acetaminophen, including an assessment of its genotoxicity. The objective of this analysis was to inform this review process with a weight-of-evidence assessment of more than 65 acetaminophen genetic toxicology studies that are of widely varying quality and conformance to accepted standards and relevance to humans. In these studies, acetaminophen showed no evidence of induction of point or gene mutations in bacterial and mammalian cell systems or in in vivo studies. In reliable, well-controlled test systems, clastogenic effects were only observed in unstable, p53-deficient cell systems or at toxic and/or excessively high concentrations that adversely affect cellular processes (e.g., mitochondrial respiration) and cause cytotoxicity. Across the studies, there was no clear evidence that acetaminophen causes DNA damage in the absence of toxicity. In well-controlled clinical studies, there was no meaningful evidence of chromosomal damage. Based on this weight-of-evidence assessment, acetaminophen overwhelmingly produces negative results (i.e., is not a genotoxic hazard) in reliable, robust high-weight studies. Its mode of action produces cytotoxic effects before it can induce the stable, genetic damage that would be indicative of a genotoxic or carcinogenic hazard.


Subject(s)
Acetaminophen/analysis , Animals , Carcinogenesis , Cell Cycle/drug effects , Chromosome Aberrations/drug effects , DNA Damage/drug effects , Humans , Mutagenicity Tests , Mutagens
2.
Regul Toxicol Pharmacol ; 120: 104859, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33388367

ABSTRACT

In 2019 California's Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen. In parallel with this review, herein we evaluated the mechanistic data related to the steps and timing of cellular events following therapeutic recommended (≤4 g/day) and higher doses of acetaminophen that may cause hepatotoxicity to evaluate whether these changes indicate that acetaminophen is a carcinogenic hazard. At therapeutic recommended doses, acetaminophen forms limited amounts of N-acetyl-p-benzoquinone-imine (NAPQI) without adverse cellular effects. Following overdoses of acetaminophen, there is potential for more extensive formation of NAPQI and depletion of glutathione, which may result in mitochondrial dysfunction and DNA damage, but only at doses that result in cell death - thus making it implausible for acetaminophen to induce the kind of stable, genetic damage in the nucleus indicative of a genotoxic or carcinogenic hazard in humans. The collective data demonstrate a lack of a plausible mechanism related to carcinogenicity and are consistent with rodent cancer bioassays, epidemiological results reviewed in companion manuscripts in this issue, as well as conclusions of multiple international health authorities.


Subject(s)
Acetaminophen/toxicity , Biochemical Phenomena/drug effects , Carcinogens/toxicity , Chemical and Drug Induced Liver Injury , Liver/drug effects , Signal Transduction/drug effects , Animals , Biochemical Phenomena/physiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , DNA Damage/drug effects , DNA Damage/physiology , Humans , Liver/metabolism , Liver/pathology , Signal Transduction/physiology
3.
Regul Toxicol Pharmacol ; 118: 104788, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33153971

ABSTRACT

In 2019, the California Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen. The objective of the analysis herein was to inform this review by assessing whether variability in patient baseline characteristics (e.g. baseline glutathione (GSH) levels, pharmacokinetics, and capacity of hepatic antioxidants) leads to potential differences in carcinogenic hazard potential at different dosing schemes: maximum labeled doses of 4 g/day, repeated doses above the maximum labeled dose (>4-12 g/day), and acute overdoses of acetaminophen (>15 g). This was achieved by performing simulations of acetaminophen exposure in thousands of diverse virtual patients scenarios using the DILIsym® Quantitative Systems Toxicology (QST) model. Simulations included assessments of the dose and exposure response for toxicity and mode of cell death based on evaluations of the kinetics of changes of: GSH, N-acetyl-p-benzoquinone-imine (NAPQI), protein adducts, mitochondrial dysfunction, and hepatic cell death. Results support that, at therapeutic doses, cellular GSH binds to NAPQI providing sufficient buffering capacity to limit protein adduct formation and subsequent oxidative stress. Simulations evaluating repeated high-level supratherapeutic exposures or acute overdoses indicate that cell death precedes DNA damage that could result in carcinogenicity and thus acetaminophen does not present a carcinogenicity hazard to humans at any dose.


Subject(s)
Acetaminophen/adverse effects , Analgesics, Non-Narcotic/administration & dosage , Carcinogenicity Tests , Chemical and Drug Induced Liver Injury/etiology , Computer Simulation , Liver Neoplasms/chemically induced , Liver/drug effects , Acetaminophen/pharmacokinetics , Analgesics, Non-Narcotic/pharmacokinetics , Antioxidants/metabolism , Cell Death/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , DNA Damage , Dose-Response Relationship, Drug , Glutathione/metabolism , Humans , Liver/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Risk Assessment
4.
Regul Toxicol Pharmacol ; 118: 104801, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33039518

ABSTRACT

In 2019 the California Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen, including an assessment of the long-term rodent carcinogenicity and tumor initiation/promotion studies. The objective of the analysis herein was to inform this review process with a weight-of-evidence assessment of these studies and an assessment of the relevance of these models to humans. In most of the 14 studies, there were no increases in the incidences of tumors in any organ system. In the few studies in which an increase in tumor incidence was observed, there were factors such as absence of a dose response and a rodent-specific tumor supporting that these findings are not relevant to human hazard identification. In addition, we performed qualitative analysis and quantitative simulations of the exposures to acetaminophen and its metabolites and its toxicity profile; the data support that the rodent models are toxicologically relevant to humans. The preclinical carcinogenicity results are consistent with the broader weight of evidence assessment and evaluations of multiple international health authorities supporting that acetaminophen is not a carcinogenic hazard.


Subject(s)
Acetaminophen/toxicity , Analgesics, Non-Narcotic/toxicity , Carcinogenicity Tests , Cell Transformation, Neoplastic/chemically induced , Neoplasms/chemically induced , Acetaminophen/pharmacokinetics , Analgesics, Non-Narcotic/pharmacokinetics , Animals , Biotransformation , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Rats , Risk Assessment , Species Specificity , Toxicokinetics
5.
Trends Pharmacol Sci ; 39(3): 232-247, 2018 03.
Article in English | MEDLINE | ID: mdl-29242029

ABSTRACT

Cancer risk assessment of therapeutics is plagued by poor translatability of rodent models of carcinogenesis. In order to overcome this fundamental limitation, new approaches are needed that enable us to evaluate cancer risk directly in humans and human-based cellular models. Our enhanced understanding of the mechanisms of carcinogenesis and the influence of human genome sequence variation on cancer risk motivates us to re-evaluate how we assess the carcinogenic risk of therapeutics. This review will highlight new opportunities for applying this knowledge to the development of a battery of human-based in vitro models and biomarkers for assessing cancer risk of novel therapeutics.


Subject(s)
Carcinogens/toxicity , Drug-Related Side Effects and Adverse Reactions/prevention & control , Neoplasms/prevention & control , Pharmacovigilance , Biomarkers, Pharmacological/analysis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Genetic Predisposition to Disease , Humans
6.
Toxicol Pathol ; 43(6): 760-75, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25903269

ABSTRACT

Increased cell proliferation is a central key event in the mode of action for many non-genotoxic carcinogens, and quantitative cell proliferation data play an important role in the cancer risk assessment of many pharmaceutical and environmental compounds. Currently, there is limited unified information on assay standards, reference values, targeted applications, study design issues, and quality control considerations for proliferation data. Here, we review issues in measuring cell proliferation indices, considerations for targeted studies, and applications within current risk assessment frameworks. As the regulatory environment moves toward more prospective evaluations based on quantitative pathway-based models, standardization of proliferation assays will become an increasingly important part of cancer risk assessment. To help address this development, we also discuss the potential role for proliferation data as a component of alternative carcinogenicity testing models. This information should improve consistency of cell proliferation methods and increase efficiency of targeted testing strategies.


Subject(s)
Carcinogens/toxicity , Cell Proliferation/drug effects , Neoplasms/diagnosis , Neoplasms/epidemiology , Risk Assessment/standards , Humans , Immunohistochemistry/standards , Quality Control , Reference Standards , Research Design
7.
J Am Assoc Lab Anim Sci ; 54(2): 163-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25836962

ABSTRACT

Cancer risk assessment of new pharmaceuticals is crucial to protect public health. However, clinical trials lack the duration needed to clearly detect drug-related tumor emergence, and biomarkers suggestive of increased cancer risk from a drug typically are not measured in clinical trials. Therefore, the carcinogenic potential of a new pharmaceutical is extrapolated predominately based on 2-y bioassays in rats and mice. A key drawback to this practice is that the results are frequently positive for tumors and can be irrelevant to human cancer risk for reasons such as dose, mode of action, and species specificity. Alternative approaches typically strive to reduce, refine, and replace rodents in carcinogenicity assessments by leveraging findings in short-term studies, both in silico and in vivo, to predict the likely tumor outcome in rodents or, more broadly, to identify a cancer risk to patients. Given the complexities of carcinogenesis and the perceived impracticality of assessing risk in the course of clinical trials, studies conducted in animals will likely remain the standard by which potential cancer risks are characterized for new pharmaceuticals in the immediate foreseeable future. However, a weight-of-evidence evaluation based on short-term toxicologic, in silico, and pharmacologic data is a promising approach to identify with reasonable certainty those pharmaceuticals that present a likely cancer risk in humans and, conversely, those that do not present a human cancer risk.


Subject(s)
Animal Experimentation , Animals, Laboratory , Carcinogenicity Tests , Animal Welfare , Animals , Biological Assay , Carcinogens/toxicity , Mice , Rats , Species Specificity
8.
Regul Toxicol Pharmacol ; 70(1): 413-29, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25078890

ABSTRACT

An international expert group which includes 30 organisations (pharmaceutical companies, contract research organisations, academic institutions and regulatory bodies) has shared data on the use of recovery animals in the assessment of pharmaceutical safety for early development. These data have been used as an evidence-base to make recommendations on the inclusion of recovery animals in toxicology studies to achieve scientific objectives, while reducing animal use. Recovery animals are used in pharmaceutical development to provide information on the potential for a toxic effect to translate into long-term human risk. They are included on toxicology studies to assess whether effects observed during dosing persist or reverse once treatment ends. The group devised a questionnaire to collect information on the use of recovery animals in general regulatory toxicology studies to support first-in-human studies. Questions focused on study design, the rationale behind inclusion or exclusion and the impact this had on internal and regulatory decisions. Data on 137 compounds (including 53 biologicals and 78 small molecules) from 259 studies showed wide variation in where, when and why recovery animals were included. An analysis of individual study and programme design shows that there are opportunities to reduce the use of recovery animals without impacting drug development.


Subject(s)
Drug Design , Drug Evaluation, Preclinical/methods , Models, Animal , Toxicology/methods , Animals , Humans , International Cooperation , Research Design , Surveys and Questionnaires , Time Factors
9.
Toxicol Sci ; 124(1): 54-74, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21813463

ABSTRACT

Evaluating the risk of chemical carcinogenesis has long been a challenge owing to the protracted nature of the pathology and the limited translatability of animal models. Although numerous short-term in vitro and in vivo assays have been developed, they have failed to reliably predict the carcinogenicity of nongenotoxic compounds. Extending upon previous microarray work (Fielden, M. R., Nie, A., McMillian, M., Elangbam, C. S., Trela, B. A., Yang, Y., Dunn, R. T., II, Dragan, Y., Fransson-Stehen, R., Bogdanffy, M., et al. (2008). Interlaboratory evaluation of genomic signatures for predicting carcinogenicity in the rat. Toxicol. Sci. 103, 28-34), we have developed and extensively evaluated a quantitative PCR-based signature to predict the potential for nongenotoxic compounds to induce liver tumors in the rat as a first step in the safety assessment of potential nongenotoxic carcinogens. The training set was derived from liver RNA from rats treated with 72 compounds and used to develop a 22-gene signature on the TaqMan array platform, providing an economical and standardized assay protocol. Independent testing on over 900 diverse samples (66 compounds) confirmed the interlaboratory precision of the assay and its ability to predict known nongenotoxic hepatocarcinogens (NGHCs). When tested under different experimental designs, strains, time points, dose setting criteria, and other preanalytical processes, the signature sensitivity and specificity was estimated to be 67% (95% confidence interval [CI] = 38-88%) and 59% (95% CI = 44-72%), respectively, with an area under the receiver operating characteristic curve of 0.65 (95% CI = 0.46-0.83%). Compounds were best classified using expression data from short-term repeat dose studies; however, the prognostic expression changes appeared to be preserved after longer term treatment. Exploratory evaluations also revealed that different modes of action for nongenotoxic and genotoxic compounds can be discriminated based on the expression of specific genes. These results support a potential early preclinical testing paradigm to catalyze broader understanding of putative NGHCs.


Subject(s)
Carcinogens/toxicity , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Liver Neoplasms, Experimental/chemically induced , Liver/drug effects , Models, Genetic , Animals , Carcinogens/classification , Genetic Markers , Genomics , Liver/metabolism , Liver Neoplasms, Experimental/genetics , Male , Predictive Value of Tests , Rats , Rats, Sprague-Dawley
10.
Toxicol Sci ; 121(2): 207-33, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21447610

ABSTRACT

Transgenic animal models are powerful tools for developing a more detailed understanding on the roles of specific genes in biological pathways and systems. Applications of these models have been made within the field of toxicology, most notably for the screening of mutagenic and carcinogenic potential and for the characterization of toxic mechanisms of action. It has long been a goal of research toxicologists to use the data from these models to refine hazard identification and characterization to better inform human health risk assessments. This review provides an overview on the applications of transgenic animal models in the assessment of mutagenicity and carcinogenicity, their use as reporter systems, and as tools for understanding the roles of xenobiotic-metabolizing enzymes and biological receptors in the etiology of chemical toxicity. Perspectives are also shared on the future outlook for these models in toxicology and risk assessment and how transgenic technologies are likely to be an integral tool for toxicity testing in the 21st century.


Subject(s)
Animals, Genetically Modified , Toxicity Tests/methods , Toxicity Tests/trends , Animals , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Humans , Mice , Mice, Knockout , Models, Animal , Mutation , PPAR alpha/genetics , PPAR alpha/metabolism , Pregnane X Receptor , Rats , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Risk Assessment/methods , Sequence Analysis, DNA , Xenobiotics/metabolism
11.
Environ Mol Mutagen ; 52(3): 205-23, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20740635

ABSTRACT

The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing established an Emerging Technologies and New Strategies Workgroup to review the current State of the Art in genetic toxicology testing. The aim of the workgroup was to identify promising technologies that will improve genotoxicity testing and assessment of in vivo hazard and risk, and that have the potential to help meet the objectives of the IVGT. As part of this initiative, HESI convened a workshop in Washington, DC in May 2008 to discuss mature, maturing, and emerging technologies in genetic toxicology. This article collates the abstracts of the New and Emerging Technologies Workshop together with some additional technologies subsequently considered by the workgroup. Each abstract (available in the online version of the article) includes a section addressed specifically to the strengths, weaknesses, opportunities, and threats associated with the respective technology. Importantly, an overview of the technologies and an indication of how their use might be aligned with the objectives of IVGT are presented. In particular, consideration was given with regard to follow-up testing of positive results in the standard IVGT tests (i.e., Salmonella Ames test, chromosome aberration assay, and mouse lymphoma assay) to add weight of evidence and/or provide mechanism of action for improved genetic toxicity risk assessments in humans.


Subject(s)
International Cooperation , Mutagenicity Tests/methods , Mutagens/toxicity , Animals , Consensus Development Conferences as Topic , Humans , Mutagenicity Tests/trends , Risk Assessment , Technology
13.
Nat Rev Drug Discov ; 9(6): 435-45, 2010 06.
Article in English | MEDLINE | ID: mdl-20514070

ABSTRACT

Heterogeneity in the underlying mechanisms of disease processes and inter-patient variability in drug responses are major challenges in drug development. To address these challenges, biomarker strategies based on a range of platforms, such as microarray gene-expression technologies, are increasingly being applied to elucidate these sources of variability and thereby potentially increase drug development success rates. With the aim of enhancing understanding of the regulatory significance of such biomarker data by regulators and sponsors, the US Food and Drug Administration initiated a programme in 2004 to allow sponsors to submit exploratory genomic data voluntarily, without immediate regulatory impact. In this article, a selection of case studies from the first 5 years of this programme - which is now known as the voluntary exploratory data submission programme, and also involves collaboration with the European Medicines Agency - are discussed, and general lessons are highlighted.


Subject(s)
Drug Approval , Gene Expression Profiling , United States Food and Drug Administration , Alanine Transaminase/blood , Azetidines/adverse effects , Azetidines/therapeutic use , Benzylamines/adverse effects , Benzylamines/therapeutic use , Carcinoma, Renal Cell/diagnosis , Europe , Fluorouracil/adverse effects , Genetic Markers , Humans , International Cooperation , Kidney Neoplasms/diagnosis , Kidney Transplantation , Pharmacogenetics , Piperazines/pharmacokinetics , Piperazines/therapeutic use , Prasugrel Hydrochloride , Precision Medicine , Thiophenes/pharmacokinetics , Thiophenes/therapeutic use , United States
14.
Nat Biotechnol ; 28(5): 446-54, 2010 May.
Article in English | MEDLINE | ID: mdl-20458314

ABSTRACT

Application of any new biomarker to support safety-related decisions during regulated phases of drug development requires provision of a substantial data set that critically assesses analytical and biological performance of that biomarker. Such an approach enables stakeholders from industry and regulatory bodies to objectively evaluate whether superior standards of performance have been met and whether specific claims of fit-for-purpose use are supported. It is therefore important during the biomarker evaluation process that stakeholders seek agreement on which critical experiments are needed to test that a biomarker meets specific performance claims, how new biomarker and traditional comparators will be measured and how the resulting data will be merged, analyzed and interpreted.


Subject(s)
Biomarkers , Drug Discovery , Pharmaceutical Preparations , Animals , Drug Discovery/legislation & jurisprudence , Drug Discovery/methods , Drug-Related Side Effects and Adverse Reactions , Humans , Pharmaceutical Preparations/standards
15.
Nat Biotechnol ; 28(5): 455-62, 2010 May.
Article in English | MEDLINE | ID: mdl-20458315

ABSTRACT

The first formal qualification of safety biomarkers for regulatory decision making marks a milestone in the application of biomarkers to drug development. Following submission of drug toxicity studies and analyses of biomarker performance to the Food and Drug Administration (FDA) and European Medicines Agency (EMEA) by the Predictive Safety Testing Consortium's (PSTC) Nephrotoxicity Working Group, seven renal safety biomarkers have been qualified for limited use in nonclinical and clinical drug development to help guide safety assessments. This was a pilot process, and the experience gained will both facilitate better understanding of how the qualification process will probably evolve and clarify the minimal requirements necessary to evaluate the performance of biomarkers of organ injury within specific contexts.


Subject(s)
Biomarkers, Pharmacological , Drug Approval/legislation & jurisprudence , Kidney , Animals , Drug-Related Side Effects and Adverse Reactions , Europe , Humans , Kidney/drug effects , Kidney/injuries , Pharmaceutical Preparations/standards , United States , United States Food and Drug Administration
16.
Toxicol Pathol ; 38(1): 169-70, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19887650

ABSTRACT

Determining the carcinogenic potential of materials to which humans have significant exposures is an important, complex, and imperfect exercise. Not only are the methods for such determinations protracted and expensive and use large numbers of animals, extrapolation of data from such studies to human risk is imprecise. With improved understanding of oncogene activation and tumor suppressor gene inactivation, a number of animal models have been developed to dramatically reduce latency for chemically induced cancers and has led to the development and use of shorter carcinogenicity assays. Recent studies by a number of investigators suggest that specific gene signature patterns seen after short-term exposure of rats to test chemicals can predict long-term outcomes in cancer bioassays with relatively high accuracy. In addition, a recent survey performed by PhRMA member companies examined two hundred drug years to determine whether histological biomarkers seen at the end of a six- or twelve-month toxicology study in rats can predict the outcome of a two-year carcinogenicity study. With only a handful of exceptions, chronic studies appear capable of predicting effects at the end of two years with good accuracy. It is hoped that the combination of results from transgenic mouse assays and six-month rat studies will soon supplant the need for most two-year bioassays.


Subject(s)
Mutagenicity Tests/methods , Neoplasms/chemically induced , Risk Assessment/methods , Animals , Humans , Mice , Rats , United States , United States Food and Drug Administration
17.
Clin Cancer Res ; 14(12): 3670-4, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18559581

ABSTRACT

In 2006, the U.S. Food and Drug Administration published its guide on exploratory investigational new drug (IND) studies with the goal of making the approach to early-stage, pilot clinical trials more flexible within the context of current regulations. The exploratory IND allows sponsors to initiate clinical trials of limited scale with reduced preclinical requirements. These studies may be important vehicles for the conduct of proof-of-principle pharmacodynamic investigations of highly potent molecules, for bioavailability studies that require only a single drug dose to be administered, and for imaging trials that permit critical dosimetry and biodistribution investigations of new molecules. These trials were done with no therapeutic intent and must be followed by traditional dose-escalation investigations that are supported by standard preclinical toxicologic and pharmacologic studies. To the extent that they allow early evaluations of essential drug characteristics that can only be obtained in humans, exploratory IND trials have the potential to limit the cost and improve the development times of new agents.


Subject(s)
Chemistry, Pharmaceutical/trends , Drug Design , Drugs, Investigational/therapeutic use , Animals , Chemistry, Pharmaceutical/methods , Diagnostic Imaging/methods , Drug Evaluation, Preclinical , Drugs, Investigational/pharmacokinetics , Humans , Models, Biological , United States , United States Food and Drug Administration
18.
Toxicol Sci ; 103(1): 28-34, 2008 May.
Article in English | MEDLINE | ID: mdl-18281259

ABSTRACT

The Critical Path Institute recently established the Predictive Safety Testing Consortium, a collaboration between several companies and the U.S. Food and Drug Administration, aimed at evaluating and qualifying biomarkers for a variety of toxicological endpoints. The Carcinogenicity Working Group of the Predictive Safety Testing Consortium has concentrated on sharing data to test the predictivity of two published hepatic gene expression signatures, including the signature by Fielden et al. (2007, Toxicol. Sci. 99, 90-100) for predicting nongenotoxic hepatocarcinogens, and the signature by Nie et al. (2006, Mol. Carcinog. 45, 914-933) for predicting nongenotoxic carcinogens. Although not a rigorous prospective validation exercise, the consortium approach created an opportunity to perform a meta-analysis to evaluate microarray data from short-term rat studies on over 150 compounds. Despite significant differences in study designs and microarray platforms between laboratories, the signatures proved to be relatively robust and more accurate than expected by chance. The accuracy of the Fielden et al. signature was between 63 and 69%, whereas the accuracy of the Nie et al. signature was between 55 and 64%. As expected, the predictivity was reduced relative to internal validation estimates reported under identical test conditions. Although the signatures were not deemed suitable for use in regulatory decision making, they were deemed worthwhile in the early assessment of drugs to aid decision making in drug development. These results have prompted additional efforts to rederive and evaluate a QPCR-based signature using these samples. When combined with a standardized test procedure and prospective interlaboratory validation, the accuracy and potential utility in preclinical applications can be ascertained.


Subject(s)
Carcinogenicity Tests/methods , Genomics , Animals , Gene Expression Profiling , Male , Rats , Rats, Sprague-Dawley
20.
Crit Rev Toxicol ; 37(9): 729-837, 2007.
Article in English | MEDLINE | ID: mdl-17957539

ABSTRACT

For more than three decades chronic studies in rodents have been the benchmark for assessing the potential long-term toxicity, and particularly the carcinogenicity, of chemicals. With doses typically administered for about 2 years (18 months to lifetime), the rodent bioassay has been an integral component of testing protocols for food additives, pesticides, pharmaceuticals, industrial chemicals, and all manner of byproducts and environmental contaminants. Over time, the data from these studies have been used to address an increasing diversity of questions related to the assessment of human health risks, adding complexity to study design and interpretation. An earlier ILSI RSI working group developed a set of principles for the selection of doses for chronic rodent studies (ILSI, 1997). The present report builds on that work, examining some of the issues that arise and offering new perspectives and approaches for putting the principles into practice. Dose selection is considered both from the prospective viewpoint of the choosing of dose levels for a study and from the retrospective interpretation of study results in light of the doses used. A main theme of this report is that the purposes and objectives of chronic rodent studies vary and should be clearly defined in advance. Dose placement, then, should be optimized to achieve study objectives. For practical reasons, most chronic studies today must be designed to address multiple objectives, often requiring trade-offs and innovative approaches in study design. A systematic approach to dose selection should begin with recognition that the design of chronic studies occurs in the context of a careful assessment of the accumulated scientific information on the test substance, the relevant risk management questions, priorities and mandates, and the practical limitations and constraints on available resources. A stepwise process is described. The aim is to increase insofar as possible the utility of an expensive and time-consuming experiment. The kinds of data that are most commonly needed for dose selection and for understanding the dose-related results of chronic rodent studies, particularly carcinogenicity studies, are discussed as "design/interpretation factors." They comprise both the inherent characteristics of the test substance and indicators of biological damage, perturbation or stress among the experimental animals. They may be primary toxicity endpoints, predictors or indicators of appropriate dose selection, or indicators of conditions to be avoided in dose selection. The application and interpretation of design/interpretation factors is conditioned by the study objectives-what is considered desirable will depend on the strategy for choice of doses that is being followed. The challenge is to select doses that accommodate all of the issues raised by the relevant design/interpretation factors. Three case studies are presented here that illustrate the interplay between study objectives and the design and selection of doses for chronic rodent studies. These examples also highlight issues associated with multiple plausible modes of action, multiple pathways for biotransformation of the chemical, extraneous high-dose effects, the use of modeling in dose selection, and the implications of human exposure levels. Finally, looking to the future, the report explores seven potential paradigm shifts for risk assessment that will significantly impact the design and interpretation of toxicity and carcinogenicity studies.


Subject(s)
Carcinogenicity Tests/methods , Dose-Response Relationship, Drug , Animals , Carcinogens/toxicity , Humans , Research Design , Rodentia
SELECTION OF CITATIONS
SEARCH DETAIL
...