Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Cell Mol Life Sci ; 81(1): 320, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078527

ABSTRACT

The hypoxia response pathway enables adaptation to oxygen deprivation. It is mediated by hypoxia-inducible factors (HIF), which promote metabolic reprogramming, erythropoiesis, angiogenesis and tissue remodeling. This led to the successful development of HIF-inducing drugs for treating anemia and some of these molecules are now in clinic. However, elevated levels of HIFs are frequently associated with tumor growth, poor prognosis, and drug resistance in various cancers, including hepatocellular carcinoma (HCC). Consequently, there are concerns regarding the recommendation of HIF-inducing drugs in certain clinical situations. Here, we analyzed the effects of two HIF-inducing drugs, Molidustat and Roxadustat, in the well-characterized HCC cell line Huh7. These drugs increased HIF-1α and HIF-2α protein levels which both participate in inducing hypoxia response genes such as BNIP3, SERPINE1, LDHA or EPO. Combined transcriptomics, proteomics and metabolomics showed that Molidustat increased the expression of glycolytic enzymes, while the mitochondrial network was fragmented and cellular respiration decreased. This metabolic remodeling was associated with a reduced proliferation and a lower demand for pyrimidine supply, but an increased ability of cells to convert pyruvate to lactate. This was accompanied by a higher resistance to the inhibition of mitochondrial respiration by antimycin A, a phenotype confirmed in Roxadustat-treated Huh7 cells and Molidustat-treated hepatoblastoma cells (Huh6 and HepG2). Overall, this study shows that HIF-inducing drugs increase the metabolic resilience of liver cancer cells to metabolic stressors, arguing for careful monitoring of patients treated with HIF-inducing drugs, especially when they are at risk of liver cancer.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Carcinoma, Hepatocellular , Cell Proliferation , Hypoxia-Inducible Factor 1, alpha Subunit , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Cell Proliferation/drug effects , Cell Line, Tumor , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Isoquinolines/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Stress, Physiological/drug effects , Cell Hypoxia/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Mitochondria/metabolism , Mitochondria/drug effects
2.
Eur J Immunol ; : e2350954, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837415

ABSTRACT

Hexokinases (HKs) control the first step of glucose catabolism. A switch of expression from liver HK (glucokinase, GCK) to the tumor isoenzyme HK2 is observed in hepatocellular carcinoma progression. Our prior work revealed that HK isoenzyme switch in hepatocytes not only regulates hepatic metabolic functions but also modulates innate immunity and sensitivity to Natural Killer (NK) cell cytotoxicity. This study investigates the impact of HK2 expression and its mitochondrial binding on the resistance of human liver cancer cells to NK-cell-induced cytolysis. We have shown that HK2 expression induces resistance to NK cell cytotoxicity in a process requiring mitochondrial binding of HK2. Neither HK2 nor GCK expression affects target cells' ability to activate NK cells. In contrast, mitochondrial binding of HK2 reduces effector caspase 3/7 activity both at baseline and upon NK-cell activation. Furthermore, HK2 tethering to mitochondria enhances their resistance to cytochrome c release triggered by tBID. These findings indicate that HK2 mitochondrial binding in liver cancer cells is an intrinsic resistance factor to cytolysis and an escape mechanism from immune surveillance.

3.
Med Sci (Paris) ; 39(10): 754-762, 2023 Oct.
Article in French | MEDLINE | ID: mdl-37943136

ABSTRACT

Hepatitis viruses modify the cellular metabolism of hepatocytes by interacting with specific enzymes such as glucokinase. The metabolic changes induced by viruses can have a direct impact on the innate antiviral response. The complex interactions between viral components, innate immunity, and hepatocyte metabolism explain why chronic hepatitis infections lead to liver inflammation, progressing to cirrhosis, fibrosis, and hepatocellular carcinoma. Metabolic regulators could be used in innovative therapies to deprive viruses of key metabolites and induce an antiviral defense.


Title: Rôle du métabolisme cellulaire dans le contrôle des hépatites virales chroniques. Abstract: Les virus des hépatites modifient le métabolisme cellulaire des hépatocytes en interagissant avec des enzymes spécifiques, telles que la glucokinase. Les changements métaboliques induits par les virus peuvent avoir un impact direct sur la réponse antivirale innée. Les interactions complexes entre les composants viraux, l'immunité innée et le métabolisme des hépatocytes expliquent pourquoi les infections hépatiques chroniques conduisent à l'inflammation du foie, évoluant vers la cirrhose, la fibrose et le carcinome hépatocellulaire. Des régulateurs du métabolisme pourraient être utilisés dans des thérapies innovantes pour priver les virus de métabolites clés et induire une défense antivirale.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis, Viral, Human , Liver Neoplasms , Humans , Hepatitis, Chronic , Antiviral Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...