Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37648285

ABSTRACT

Obesity is a metabolic state of energy excess and a risk factor for over a dozen cancer types. Because of the rising worldwide prevalence of obesity, decoding the mechanisms by which obesity promotes tumor initiation and early progression is a societal imperative and could broadly impact human health. Here, we review results from preclinical models that link obesity to cancer, using pancreatic adenocarcinoma as a paradigmatic example. We discuss how obesity drives cancer development by reprogramming the pretumor or tumor cell and its micro- and macro-environments. Specifically, we describe evidence for (1) altered cellular metabolism, (2) hormone dysregulation, (3) inflammation, and (4) microbial dysbiosis in obesity-driven pancreatic tumorigenesis, denoting variables that confound interpretation of these studies, and highlight remaining gaps in knowledge. Recent advances in preclinical modeling and emerging unbiased analytic approaches will aid in further unraveling the complex link between obesity and cancer, informing novel strategies for prevention, interception, and therapy in pancreatic adenocarcinoma and other obesity-associated cancers.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Adenocarcinoma/etiology , Pancreatic Neoplasms/etiology , Obesity/complications , Carcinogenesis , Cell Transformation, Neoplastic
3.
Proc Natl Acad Sci U S A ; 115(8): E1926-E1935, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29429964

ABSTRACT

Cells in tissues communicate by secreted growth factors (GF) and other signals. An important function of cell circuits is tissue homeostasis: maintaining proper balance between the amounts of different cell types. Homeostasis requires negative feedback on the GFs, to avoid a runaway situation in which cells stimulate each other and grow without control. Feedback can be obtained in at least two ways: endocytosis in which a cell removes its cognate GF by internalization and cross-inhibition in which a GF down-regulates the production of another GF. Here we ask whether there are design principles for cell circuits to achieve tissue homeostasis. We develop an analytically solvable framework for circuits with multiple cell types and find that feedback by endocytosis is far more robust to parameter variation and has faster responses than cross-inhibition. Endocytosis, which is found ubiquitously across tissues, can even provide homeostasis to three and four communicating cell types. These design principles form a conceptual basis for how tissues maintain a healthy balance of cell types and how balance may be disrupted in diseases such as degeneration and fibrosis.


Subject(s)
Endocytosis , Cell Physiological Phenomena , Cells/chemistry , Homeostasis , Models, Biological , Models, Theoretical
4.
Cell ; 172(4): 744-757.e17, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29398113

ABSTRACT

Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions.


Subject(s)
Cell Communication/physiology , Cell Proliferation/physiology , Fibroblasts/metabolism , Macrophages/metabolism , Animals , Cell Survival/physiology , Female , Fibroblasts/cytology , Macrophages/cytology , Male , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...