Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 19(4): 694-702, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21224832

ABSTRACT

Herpes simplex virus type 1 (HSV1) is a major health problem. As for most viral diseases, current antiviral treatments are based on the inhibition of viral replication once it has already started. As a consequence, they impair neither the viral cycle at its early stages nor the latent form of the virus, and thus cannot be considered as real preventive treatments. Latent HSV1 virus could be addressed by rare cutting endonucleases, such as meganucleases. With the aim of a proof of concept study, we generated several meganucleases recognizing HSV1 sequences, and assessed their antiviral activity in cultured cells. We demonstrate that expression of these proteins in African green monkey kidney fibroblast (COS-7) and BSR cells inhibits infection by HSV1, at low and moderate multiplicities of infection (MOIs), inducing a significant reduction of the viral load. Furthermore, the remaining viral genomes display a high rate of mutation (up to 16%) at the meganuclease cleavage site, consistent with a mechanism of action based on the cleavage of the viral genome. This specific mechanism of action qualifies meganucleases as an alternative class of antiviral agent, with the potential to address replicative as well as latent DNA viral forms.


Subject(s)
Deoxyribonucleases/metabolism , Herpesviridae Infections/prevention & control , Animals , Blotting, Western , CHO Cells , COS Cells , Cell Line , Chlorocebus aethiops , Cricetinae , Cricetulus , Deoxyribonucleases/genetics , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/pathogenicity , Humans
2.
J Biomol Screen ; 15(8): 956-67, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20625180

ABSTRACT

The development of cell-based assays for high-throughput screening (HTS) approaches often requires the generation of stable transformant cell lines. However, these cell lines are essentially created by random integration of a gene of interest (GOI) with no control over the level and stability of gene expression. The authors developed a targeted integration system in Chinese hamster ovary (CHO) cells, called the cellular genome positioning system (cGPS), based on the stimulation of homologous gene targeting by meganucleases. Five different GOIs were knocked in at the same locus in cGPS CHO-K1 cells. Further characterization revealed that the cGPS CHO-K1 system is more rapid (2-week protocol), efficient (all selected clones expressed the GOI), reproducible (GOI expression level variation of 12%), and stable over time (no change in GOI expression after 23 weeks of culture) than classical random integration. Moreover, in all cGPS CHO-K1 targeted clones, the recombinant protein was biologically active and its properties similar to the endogenous protein. This fast and robust method opens the door for creating large collections of cell lines of better quality and expressing therapeutically relevant GOIs at physiological levels, thereby enhancing the potential scope of HTS.


Subject(s)
Cells/metabolism , Deoxyribonucleases/physiology , Gene Targeting/methods , High-Throughput Screening Assays/methods , Mutagenesis, Site-Directed/methods , Animals , CHO Cells , Cell Line , Cells/cytology , Chromosome Mapping/methods , Cricetinae , Cricetulus , Deoxyribonucleases/metabolism , Models, Biological , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...