Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822575

ABSTRACT

Mitoviruses, which are considered evolutionary relics of extinct alpha-proteobacteria RNA phages, represent one of the simplest self-replicating biological systems. This study aims to quantitatively describe genomes and identify potential genomic signatures that support the protein phylogenetic-based classification criterion. Genomic variables, such as mononucleotide and dinucleotide composition, codon usage bias, and minimal free energy derived from optimized predicted RNA secondary structure, were analyzed. From the values obtained, the main evolutionary pressures were discussed, indicating that natural selection plays a significant role in shaping mitovirus genomes. However, neutral evolution also makes a significant contribution. This study reveals a significant discovery of structural divergence in Kvaramitovirus. The energy minimization approach employed to study 2D folding in this study reveals a distinct spatial organization of their genomes, providing evidence for the hypothesis of a single evolutionary event of circularization in the most recent common ancestor of the lineage. This hypothesis was discussed in light of recent discoveries by other researchers that partially support the existence of mitoviruses with circular genomes. Finally, this study represents a significant advancement in the understanding of mitoviruses, as it quantitatively describes the nucleotide sequence at the family and genus taxonomic levels. Additionally, we provide hypotheses that can be experimentally validated to inspire new research and address the gaps in knowledge of this fascinating, basally divergent RNA virus lineage.

2.
Viruses ; 15(2)2023 01 25.
Article in English | MEDLINE | ID: mdl-36851553

ABSTRACT

Mitoviruses are small vertically transmitted RNA viruses found in fungi, plants and animals. Taxonomically, a total of 105 species and 4 genera have been formally recognized by ICTV, and recently, 18 new putative species have been included in a new proposed genus. Transcriptomic and metatranscriptomic studies are a major source of countless new virus-like sequences that are continually being added to open databases and these may be good sources for identifying new putative mitoviruses. The search for mitovirus-like sequences in the NCBI databases resulted in the discovery of more than one hundred new putative mitoviruses, with important implications for taxonomy and also for the evolutionary scenario. Here, we propose the inclusion of four new putative members to the genus Kvaramitovirus, and the existence of a new large basally divergent lineage composed of 144 members that lack internal UGA codons (subfamily "Arkeomitovirinae"), a feature not shared by the vast majority of mitoviruses. Finally, a taxonomic categorization proposal and a detailed description of the evolutionary history of mitoviruses were carried out. This in silico study supports the hypothesis of the existence of a basally divergent lineage that could have had an impact on the early evolutionary history of mitoviruses.


Subject(s)
Biological Evolution , Magnoliopsida , Animals , Reading Frames , Codon, Terminator , Databases, Factual , Gene Expression Profiling
3.
Environ Microbiol ; 24(12): 6463-6475, 2022 12.
Article in English | MEDLINE | ID: mdl-36085554

ABSTRACT

Mitoviruses (family Mitoviridae) are small capsid-less RNA viruses that replicate in the mitochondria of fungi and plants. However, to date, the only authentic animal mitovirus infecting an insect was identified as Lutzomyia longipalpis mitovirus 1 (LulMV1). Public databases of transcriptomic studies from several animals may be a good source for identifying the often missed mitoviruses. Consequently, a search of mitovirus-like transcripts at the NCBI transcriptome shotgun assembly (TSA) library, and a search for the mitoviruses previously recorded at the NCBI non-redundant (nr) protein sequences library, were performed in order to identify new mitovirus-like sequences associated with animals. In total, 10 new putative mitoviruses were identified in the TSA database and 8 putative mitoviruses in the nr protein database. To our knowledge, these results represent the first evidence of putative mitoviruses associated with poriferan, cnidarians, echinoderms, crustaceans, myriapods and arachnids. According to different phylogenetic inferences using the maximum likelihood method, these 18 putative mitoviruses form a robust monophyletic lineage with LulMV1, the only known animal-infecting mitovirus. These findings based on in silico procedures provide strong evidence for the existence of a clade of putative mitoviruses associated with animals, which has been provisionally named 'kvinmitovirus'.


Subject(s)
RNA Viruses , Genome, Viral , Mitochondria/genetics , Phylogeny , Plant Diseases/microbiology , RNA Viruses/genetics , RNA, Viral
4.
Viruses ; 12(10)2020 10 14.
Article in English | MEDLINE | ID: mdl-33066620

ABSTRACT

Mycoviruses appear to be widespread in Fusarium species worldwide. The aim of this work was to identify mycoviral infections in Fusarium spp., isolated from maize and sorghum grown in Argentina, and to estimate their potential effects on the pathogenicity and toxigenesis of the host fungus towards maize. Mycoviruses were identified in 2 out of 105 isolates analyzed; Fusarium verticillioides strain Sec505 and Fusarium andiyazi strain 162. They were characterized as members of the genus Mitovirus by high-throughput sequencing and sequence analysis. The F. verticillioides mitovirus was a novel mycovirus whereas the F. andiyazi mitovirus was found to be a new strain of a previously identified mitovirus. We have named these mitoviruses, Fusarium verticillioides mitovirus 1 (FvMV1) and Fusarium andiyazi mitovirus 1 strain 162 (FaMV1-162). To our knowledge, FvMV1 is the first mycovirus reported as naturally infecting F. verticillioides, the major causal agent of ear rot and fumonisin producer in corn. Both mitoviruses exhibited 100% vertical transmission rate to microconidia. The Fa162 strain infected with FaMV1-162 did not show phenotypic alterations. In contract, F. verticillioides Sec505 infected with FvMV1 showed increased virulence as well as microconidia and fumonisin-B1 production, compared with two uninfected strains. These results suggest that FvMV1 could have a role in modulating F. verticillioides pathogenicity and toxin production worth further exploring.


Subject(s)
Fungal Viruses/classification , Fusarium/pathogenicity , Fusarium/virology , Sorghum/microbiology , Zea mays/microbiology , Argentina , Fungal Viruses/isolation & purification , High-Throughput Nucleotide Sequencing , Phylogeny , Plant Diseases/microbiology , Spores, Fungal/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...