Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 42(11): 7247-58, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24782519

ABSTRACT

Cyclodipeptide synthases (CDPSs) use two aminoacyl-tRNA substrates in a sequential ping-pong mechanism to form a cyclodipeptide. The crystal structures of three CDPSs have been determined and all show a Rossmann-fold domain similar to the catalytic domain of class-I aminoacyl-tRNA synthetases (aaRSs). Structural features and mutational analyses however suggest that CDPSs and aaRSs interact differently with their tRNA substrates. We used AlbC from Streptomyces noursei that mainly produces cyclo(l-Phe-l-Leu) to investigate the interaction of a CDPS with its substrates. We demonstrate that Phe-tRNA(Phe) is the first substrate accommodated by AlbC. Its binding to AlbC is dependent on basic residues located in the helix α4 that form a basic patch at the surface of the protein. AlbC does not use all of the Leu-tRNA(Leu) isoacceptors as a second substrate. We show that the G(1)-C(72) pair of the acceptor stem is essential for the recognition of the second substrate. Substitution of D163 located in the loop α6-α7 or D205 located in the loop ß6-α8 affected Leu-tRNA(Leu) isoacceptors specificity, suggesting the involvement of these residues in the binding of the second substrate. This is the first demonstration that the two substrates of CDPSs are accommodated in different binding sites.


Subject(s)
Bacterial Proteins/metabolism , Peptide Synthases/metabolism , RNA, Transfer, Amino Acyl/metabolism , Streptomyces/enzymology , Bacterial Proteins/chemistry , Binding Sites , Peptide Synthases/chemistry , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Leu/chemistry , RNA, Transfer, Leu/metabolism , RNA, Transfer, Phe/chemistry , RNA, Transfer, Phe/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...