Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(13): e202203732, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36478469

ABSTRACT

The use of benzylic and allylic alcohols in HFIP solvent together with Ti(Oi Pr)4 has been shown to trigger a highly stereoselective polyene cyclisation cascade. Three new carbon-carbon bonds are made during the process and complete stereocontrol of up to five new stereogenic centers is observed. The reaction is efficient, has high functional group tolerance and is atom-economic generating water as a stoichiometric by-product. A new polyene substrate-class is employed, and subsequent mechanistic studies indicate a stereoconvergent mechanism. The products of this reaction can be used to synthesize steroid-analogues in a single step.

2.
Nat Commun ; 10(1): 21, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604753

ABSTRACT

The desymmetrization of meso-compounds is a useful synthetic method, as illustrated by numerous applications of this strategy in natural product synthesis. Cu-catalyzed allylic desymmetrizations enable the enantioselective formation of carbon-carbon bonds, but these transformations are limited in substrate scope and by the use of highly reactive premade organometallic reagents at cryogenic temperatures. Here we show that diverse meso-bisphosphates in combination with alkylzirconium nucleophiles undergo highly regio-, diastereo- and enantio-selective Cu-catalyzed desymmetrization reactions. In addition, C2-symmetric chiral bisphosphates undergo stereospecific reactions and a racemic substrate undergoes a Cu-catalyzed kinetic resolution. The reaction tolerates functional groups incompatible with many common organometallic reagents and provides access to a broad range of functionalized carbo- and hetero-cyclic structures. The products bear up to three contiguous stereogenic centers, including quaternary centers and spirocyclic ring systems. We anticipate that the method will be a useful complement to existing catalytic enantioselective reactions.

3.
Org Biomol Chem ; 14(25): 5875-93, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27108941

ABSTRACT

In the past two decades, alkene metathesis has risen in prominence to become a significant synthetic strategy for alkene formation. Many total syntheses of natural products have used this transformation. We review the use, from 2003 to 2015, of ring-closing alkene metathesis (RCM) for the generation of dihydrofurans or -pyrans in natural product synthesis. The strategies used to assemble the RCM precursors and the subsequent use of the newly formed unsaturation will also be highlighted and placed in context.


Subject(s)
Alkenes/chemistry , Biological Products/chemistry , Biological Products/chemical synthesis , Chemistry Techniques, Synthetic/methods , Furans/chemistry , Pyrans/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...