Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Nat Mater ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710799

ABSTRACT

Topologically protected spin whirls in ferromagnets are foreseen as the cart-horse of solitonic information technologies. Nevertheless, the future of skyrmionics may rely on antiferromagnets due to their immunity to dipolar fields, straight motion along the driving force and ultrafast dynamics. While complex topological objects were recently discovered in intrinsic antiferromagnets, mastering their nucleation, stabilization and manipulation with energy-efficient means remains an outstanding challenge. Designing topological polar states in magnetoelectric antiferromagnetic multiferroics would allow one to electrically write, detect and erase topological antiferromagnetic entities. Here we stabilize ferroelectric centre states using a radial electric field in multiferroic BiFeO3 thin films. We show that such polar textures contain flux closures of antiferromagnetic spin cycloids, with distinct antiferromagnetic entities at their cores depending on the electric field polarity. By tuning the epitaxial strain, quadrants of canted antiferromagnetic domains can also be electrically designed. These results open the path to reconfigurable topological states in multiferroic antiferromagnets.

2.
Science ; 384(6693): 307-312, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38635712

ABSTRACT

Magnetic skyrmions are topological magnetic textures that hold great promise as nanoscale bits of information in memory and logic devices. Although room-temperature ferromagnetic skyrmions and their current-induced manipulation have been demonstrated, their velocity has been limited to about 100 meters per second. In addition, their dynamics are perturbed by the skyrmion Hall effect, a motion transverse to the current direction caused by the skyrmion topological charge. Here, we show that skyrmions in compensated synthetic antiferromagnets can be moved by current along the current direction at velocities of up to 900 meters per second. This can be explained by the cancellation of the net topological charge leading to a vanishing skyrmion Hall effect. Our results open an important path toward the realization of logic and memory devices based on the fast manipulation of skyrmions in tracks.

3.
Adv Mater ; 36(2): e2306033, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37705372

ABSTRACT

The unique physical, mechanical, chemical, optical, and electronic properties of hexagonal boron nitride (hBN) make it a promising 2D material for electronic, optoelectronic, nanophotonic, and quantum devices. Here, the changes in hBN's properties induced by isotopic purification in both boron and nitrogen are reported. Previous studies on isotopically pure hBN have focused on purifying the boron isotope concentration in hBN from its natural concentration (≈20 at% 10 B, 80 at% 11 B) while using naturally abundant nitrogen (99.6 at% 14 N, 0.4 at% 15 N), that is, almost pure 14 N. In this study, the class of isotopically purified hBN crystals to 15 N is extended. Crystals in the four configurations, namely h10 B14 N, h11 B14 N, h10 B15 N, and h11 B15 N, are grown by the metal flux method using boron and nitrogen single isotope (> 99%) enriched sources, with nickel plus chromium as the solvent. In-depth Raman and photoluminescence spectroscopies demonstrate the high quality of the monoisotopic hBN crystals with vibrational and optical properties of the 15 N-purified crystals at the state-of-the-art of currently available 14 N-purified hBN. The growth of high-quality h10 B14 N, h11 B14 N, h10 B15 N, and h11 B15 N opens exciting perspectives for thermal conductivity control in heat management, as well as for advanced functionalities in quantum technologies.

4.
Nano Lett ; 23(19): 9073-9079, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37737821

ABSTRACT

In the room-temperature magnetoelectric multiferroic BiFeO3, the noncollinear antiferromagnetic state is coupled to the ferroelectric order, opening applications for low-power electric-field-controlled magnetic devices. While several strategies have been explored to simplify the ferroelectric landscape, here we directly stabilize a single-domain ferroelectric and spin cycloid state in epitaxial BiFeO3 (111) thin films grown on orthorhombic DyScO3 (011). Comparing them with films grown on SrTiO3 (111), we identify anisotropic in-plane strain as a powerful handle for tailoring the single antiferromagnetic state. In this single-domain multiferroic state, we establish the thickness limit of the coexisting electric and magnetic orders and directly visualize the suppression of the spin cycloid induced by the magnetoelectric interaction below the ultrathin limit of 1.4 nm. This as-grown single-domain multiferroic configuration in BiFeO3 thin films opens an avenue both for fundamental investigations and for electrically controlled noncollinear antiferromagnetic spintronics.

5.
J Appl Crystallogr ; 56(Pt 2): 381-390, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37032969

ABSTRACT

Micropillar compression is a method of choice to understand mechanics at small scale. It is mainly studied with electron microscopy or white-beam micro-Laue X-ray diffraction. The aim of the present article is to show the possibilities of the use of diffraction with a coherent X-ray beam. InSb micropillars in epitaxy with their pedestals (i.e. their support) are studied in situ during compression. Firstly, an experiment using a collimated beam matching the pillar size allows determination of when the sample enters the plastic regime, independently of small defects induced by experimental artefacts. A second experiment deals with scanning X-ray diffraction maps with a nano-focused beam; despite the coherence of the beam, the contributions from the pedestal and from the micropillar in the diffraction patterns can be separated, making possible a spatially resolved study of the plastic strain fields. A quantitative measurement of the elastic strain field is nevertheless hampered by the fact that the pillar diffracts at the same angles as the pedestal. Finally, no image reconstructions were possible in these experiments, either in situ due to a blurring of the fringes during loading or post-mortem because the defect density after yielding was too high. However, it is shown how to determine the elastic bending of the pillar in the elastic regime. Bending angles of around 0.3° are found, and a method to estimate the sample's radius of curvature is suggested.

6.
Phys Rev Lett ; 128(17): 177401, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35570423

ABSTRACT

We investigate the magnetic field dependent photophysics of individual nitrogen-vacancy (NV) color centers in diamond under cryogenic conditions. At distinct magnetic fields, we observe significant reductions in the NV photoluminescence rate, which indicate a marked decrease in the optical readout efficiency of the NV's ground state spin. We assign these dips to excited state level anticrossings, which occur at magnetic fields that strongly depend on the effective, local strain environment of the NV center. Our results offer new insights into the structure of the NVs' excited states and a new tool for their effective characterization. Using this tool, we observe strong indications for strain-dependent variations of the NV's orbital g factor, obtain new insights into NV charge state dynamics, and draw important conclusions regarding the applicability of NV centers for low-temperature quantum sensing.

7.
J Inherit Metab Dis ; 45(4): 832-847, 2022 07.
Article in English | MEDLINE | ID: mdl-35510808

ABSTRACT

X-linked adrenoleukodystrophy (ALD) results from ABCD1 gene mutations which impair Very Long Chain Fatty Acids (VLCFA; C26:0 and C24:0) peroxisomal import and ß-oxidation, leading to accumulation in plasma and tissues. Excess VLCFA drives impaired cellular functions (e.g. disrupted mitochondrial function), inflammation, and neurodegeneration. Major disease phenotypes include: adrenomyeloneuropathy (AMN), progressive spinal cord axonal degeneration, and cerebral ALD (C-ALD), inflammatory white matter demyelination and degeneration. No pharmacological treatment is available to-date for ALD. Pioglitazone, an anti-diabetic thiazolidinedione, exerts potential benefits in ALD models. Its mechanisms are genomic (PPARγ agonism) and nongenomic (mitochondrial pyruvate carrier-MPC, long-chain acyl-CoA synthetase 4-ACSL4, inhibition). However, its use is limited by PPARγ-driven side effects (e.g. weight gain, edema). PXL065 is a clinical-stage deuterium-stabilized (R)-enantiomer of pioglitazone which lacks PPARγ agonism but retains MPC activity. Here, we show that incubation of ALD patient-derived cells (both AMN and C-ALD) and glial cells from Abcd1-null mice with PXL065 resulted in: normalization of elevated VLCFA, improved mitochondrial function, and attenuated indices of inflammation. Compensatory peroxisomal transporter gene expression was also induced. Additionally, chronic treatment of Abcd1-null mice lowered VLCFA in plasma, brain and spinal cord and improved both neural histology (sciatic nerve) and neurobehavioral test performance. Several in vivo effects of PXL065 exceeded those achieved with pioglitazone. PXL065 was confirmed to lack PPARγ agonism but retained ACSL4 activity of pioglitazone. PXL065 has novel actions and mechanisms and exhibits a range of potential benefits in ALD models; further testing of this molecule in ALD patients is warranted.


Subject(s)
Adrenoleukodystrophy , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adrenoleukodystrophy/drug therapy , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/metabolism , Animals , Deuterium/metabolism , Fatty Acids/metabolism , Fatty Acids, Nonesterified , Inflammation , Mice , Mice, Knockout , PPAR gamma/metabolism , Pioglitazone
8.
Phys Rev Lett ; 128(18): 187201, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35594103

ABSTRACT

We report on the formation of topological defects emerging from the cycloidal antiferromagnetic order at the surface of bulk BiFeO_{3} crystals. Combining reciprocal and real-space magnetic imaging techniques, we first observe, in a single ferroelectric domain, the coexistence of antiferromagnetic domains in which the antiferromagnetic cycloid propagates along different wave vectors. We then show that the direction of these wave vectors is not strictly locked to the preferred crystallographic axes as continuous rotations bridge different wave vectors. At the junctions between the magnetic domains, we observe topological line defects identical to those found in a broad variety of lamellar physical systems with rotational symmetries. Our work establishes the presence of these magnetic objects at room temperature in the multiferroic antiferromagnet BiFeO_{3}, offering new possibilities for their use in spintronics.

9.
Hepatol Commun ; 5(8): 1412-1425, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34430785

ABSTRACT

The antidiabetic drug pioglitazone is, to date, the most efficacious oral drug recommended off-label for the treatment of nondiabetic or diabetic patients with biopsy-proven nonalcoholic steatohepatitis (NASH). However, weight gain and edema side effects have limited its use for NASH. Pioglitazone is a mixture of two stereoisomers ((R)-pioglitazone and (S)-pioglitazone) that interconvert in vitro and in vivo. We aimed to characterize their individual pharmacology to develop a safer and potentially more potent drug for NASH. We stabilized the stereoisomers of pioglitazone with deuterium at the chiral center. Preclinical studies with deuterium-stabilized (R)-pioglitazone (PXL065) and (S)-pioglitazone demonstrated that (R)-pioglitazone retains the efficacy of pioglitazone in NASH, including reduced hepatic triglycerides, free fatty acids, cholesterol, steatosis, inflammation, hepatocyte enlargement, and fibrosis. Although both stereoisomers inhibit the mitochondrial pyruvate carrier, PXL065 shows limited to no peroxisome proliferator-activated receptor gamma (PPARγ) activity, whereas (S)-pioglitazone appears responsible for the PPARγ activity and associated weight gain. Nonetheless, in preclinical models, both stereoisomers reduce plasma glucose and hepatic fibrosis to the same extent as pioglitazone, suggesting that these benefits may also be mediated by altered mitochondrial metabolism. In a phase 1a clinical study, we demonstrated safety and tolerability of single 7.5-mg, 22.5-mg, and 30-mg doses of PXL065 as well as preferential exposure to the (R)-stereoisomer in comparison to 45-mg pioglitazone. Conclusion: PXL065 at a dose lower than 22.5 mg is predicted to exhibit efficacy for NASH equal to, or greater than, 45-mg pioglitazone without the potentially detrimental weight gain and edema. The development of PXL065 for NASH represents a unique opportunity to leverage the therapeutic benefits of pioglitazone, while reducing or eliminating PPARγ-related side effects.

10.
Nat Commun ; 12(1): 767, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33536440

ABSTRACT

Antiferromagnetic materials are promising platforms for next-generation spintronics owing to their fast dynamics and high robustness against parasitic magnetic fields. However, nanoscale imaging of the magnetic order in such materials with zero net magnetization remains a major experimental challenge. Here we show that non-collinear antiferromagnetic spin textures can be imaged by probing the magnetic noise they locally produce via thermal populations of magnons. To this end, we perform nanoscale, all-optical relaxometry with a scanning quantum sensor based on a single nitrogen-vacancy (NV) defect in diamond. Magnetic noise is detected through an increase of the spin relaxation rate of the NV defect, which results in an overall reduction of its photoluminescence signal under continuous laser illumination. As a proof-of-concept, the efficiency of the method is demonstrated by imaging various spin textures in synthetic antiferromagnets, including domain walls, spin spirals and antiferromagnetic skyrmions. This imaging procedure could be extended to a large class of intrinsic antiferromagnets and opens up new opportunities for studying the physics of localized spin wave modes for magnonics.

11.
ACS Med Chem Lett ; 11(10): 1789-1792, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33062153

ABSTRACT

Separation of the preferred enantiomer from racemic mixtures, i.e. "chiral switching," often improves efficacy and reduces toxicity. However, this strategy is not applicable for all chiral compounds-particularly for molecules with hydrogen-containing chiral centers, which can be prone to rapid stereoisomerization. Deuterium incorporation can stabilize such chiral centers while retaining the pharmacologic characteristics of the parent racemic mixture, thereby enabling their "chiral switching", changing the drug from a racemate to a single enantiomer. We describe "deuterium-enabled chiral switching" (DECS) as a means of improving on the therapeutic promise of chemically unstable racemic drugs and demonstrate its utility with the isolation and characterization of stable preferred enantiomers of thalidomide and thiazolidinedione (TZD) analogs.

12.
J Phys Chem Lett ; 7(24): 5093-5100, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973876

ABSTRACT

Hybrid perovskite thin films have demonstrated impressive performance for solar energy conversion and optoelectronic applications. However, further progress will benefit from a better knowledge of the intrinsic photophysics of materials. Here, the temperature-dependent emission properties of CH3NH3PbI3 single crystals are investigated and compared to those of thin polycrystalline films by means of steady-state and time-resolved photoluminescence spectroscopy. Single crystals photoluminescence present a sharp excitonic emission at high energy, with full width at half maximum of only 5 meV, assigned to free excitonic recombination. We highlight a strong thermal broadening of the free excitonic emission, due to exciton-LO-phonon coupling. The emission turned to be very short-lived with a subnanosecond dynamics, mainly induced by the fast trapping of the excitons. The free excitonic emission is completely absent of the thin film spectra, which are dominated by trap state bands.

13.
PLoS One ; 11(3): e0152498, 2016.
Article in English | MEDLINE | ID: mdl-27031333

ABSTRACT

An important epigenetic modification in Huntington's disease (HD) research is histone acetylation, which is regulated by histone acetyltransferase and histone deacetylase (HDAC) enzymes. HDAC inhibitors have proven effective in HD model systems, and recent work is now focused on functional dissection of the individual HDAC enzymes in these effects. Histone deacetylase 3 (HDAC3), a member of the class I subfamily of HDACs, has previously been implicated in neuronal toxicity and huntingtin-induced cell death. Hence, we tested the effects of RGFP966 ((E)-N-(2-amino-4-fluorophenyl)-3-(1-cinnamyl-1H-pyrazol-4-yl)acrylamide), a benzamide-type HDAC inhibitor that selectively targets HDAC3, in the N171-82Q transgenic mouse model of HD. We found that RGFP966 at doses of 10 and 25 mg/kg improves motor deficits on rotarod and in open field exploration, accompanied by neuroprotective effects on striatal volume. In light of previous studies implicating HDAC3 in immune function, we measured gene expression changes for 84 immune-related genes elicited by RGFP966 using quantitative PCR arrays. RGFP966 treatment did not cause widespread changes in cytokine/chemokine gene expression patterns, but did significantly alter the striatal expression of macrophage migration inhibitory factor (Mif), a hormone immune modulator associated with glial cell activation, in N171-82Q transgenic mice, but not WT mice. Accordingly, RGFP966-treated mice showed decreased glial fibrillary acidic protein (GFAP) immunoreactivity, a marker of astrocyte activation, in the striatum of N171-82Q transgenic mice compared to vehicle-treated mice. These findings suggest that the beneficial actions of HDAC3 inhibition could be related, in part, with lowered Mif levels and its associated downstream effects.


Subject(s)
Histone Deacetylases/chemistry , Huntington Disease/pathology , Acrylamides/pharmacology , Animals , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Huntington Disease/metabolism , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Mice , Mice, Transgenic , Motor Activity/drug effects , Neuroprotective Agents/pharmacology , Phenylenediamines/pharmacology , RNA, Messenger/metabolism
14.
J Neurosci ; 35(38): 13124-32, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26400942

ABSTRACT

Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. Significance statement: Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by enabling more acoustic information to become encoded into memory. Moreover, RGFP966 appears to affect cortical plasticity: the primary auditory cortex reorganized in a manner that was unusually "tuned-in" to the specific sound cues and acoustic features that were related to reward and subsequently remembered. We propose that HDACs control "informational capture" at a systems level for what and how much information is encoded by gating sensory cortical plasticity that underlies the sensory richness of newly formed memories.


Subject(s)
Auditory Cortex/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Memory/drug effects , Acrylamides/pharmacology , Animals , Auditory Cortex/drug effects , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Evoked Potentials/drug effects , Male , Neuronal Plasticity/drug effects , Phenylenediamines/pharmacology , Rats , Rats, Sprague-Dawley , Reaction Time/drug effects , Statistics, Nonparametric , Time Factors , Water Deprivation
15.
Proc Natl Acad Sci U S A ; 112(12): E1471-9, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25775521

ABSTRACT

Therapeutics developed and sold as racemates can exhibit a limited therapeutic index because of side effects resulting from the undesired enantiomer (distomer) and/or its metabolites, which at times, forces researchers to abandon valuable scaffolds. Therefore, most chiral drugs are developed as single enantiomers. Unfortunately, the development of some chirally pure drug molecules is hampered by rapid in vivo racemization. The class of compounds known as immunomodulatory drugs derived from thalidomide is developed and sold as racemates because of racemization at the chiral center of the 3-aminoglutarimide moiety. Herein, we show that replacement of the exchangeable hydrogen at the chiral center with deuterium allows the stabilization and testing of individual enantiomers for two thalidomide analogs, including CC-122, a compound currently in human clinical trials for hematological cancers and solid tumors. Using "deuterium-enabled chiral switching" (DECS), in vitro antiinflammatory differences of up to 20-fold are observed between the deuterium-stabilized enantiomers. In vivo, the exposure is dramatically increased for each enantiomer while they retain similar pharmacokinetics. Furthermore, the single deuterated enantiomers related to CC-122 exhibit profoundly different in vivo responses in an NCI-H929 myeloma xenograft model. The (-)-deuterated enantiomer is antitumorigenic, whereas the (+)-deuterated enantiomer has little to no effect on tumor growth. The ability to stabilize and differentiate enantiomers by DECS opens up a vast window of opportunity to characterize the class effects of thalidomide analogs and improve on the therapeutic promise of other racemic compounds, including the development of safer therapeutics and the discovery of new mechanisms and clinical applications for existing therapeutics.


Subject(s)
Anti-Inflammatory Agents/chemistry , Antineoplastic Agents/chemistry , Inflammation/drug therapy , Neoplasms/drug therapy , Piperidones/chemistry , Quinazolinones/chemistry , Thalidomide/analogs & derivatives , Animals , Cell Line, Tumor , Cell Survival , Female , Humans , Leukocytes, Mononuclear/cytology , Mice , Mice, SCID , Models, Chemical , Neoplasm Transplantation , Neoplasms/immunology , Stereoisomerism , Thalidomide/chemistry , Tumor Necrosis Factor-alpha/metabolism
16.
Methods Mol Biol ; 1088: 185-211, 2014.
Article in English | MEDLINE | ID: mdl-24146405

ABSTRACT

Peptides are highly selective, high-affinity ligands for a diverse array of disease targets, but suitably derivatizing them for application as diagnostic or therapeutic agents often presents a significant challenge. Covalent modification with metal chelates frequently results in decreased binding affinity, so a variety of strategies must be explored to find suitable locations for modification and facile peptide conjugation chemistries that maintain or enhance binding affinity. In this chapter, we present a paradigm for systematically optimizing peptide binding and determining the favorable sites and methods for peptide conjugation. This strategy is illustrated by two case studies of peptide-based targeted gadolinium contrast agents: EP-2104R for diagnosis of thrombosis and EP-3533 for diagnosis of cardiac perfusion and fibrosis. Two different architectures for the peptide-metal complex conjugation were designed: EP-2104R contains a total of four gadolinium (Gd) chelates linked at the N- and C-termini, whereas EP-3533 is derivatized with three Gd chelates, two on the N-terminus and one on a lysine side chain. Detailed protocols are provided for two Gd chelate conjugation methods.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Peptides , Amino Acid Sequence , Collagen/chemistry , Collagen/metabolism , Contrast Media/chemistry , Fibrin/metabolism , Gadolinium/chemistry , Gadolinium DTPA/chemistry , Heterocyclic Compounds/chemistry , Humans , Molecular Sequence Data , Organometallic Compounds/chemistry , Peptides/chemical synthesis , Peptides/chemistry , Staining and Labeling , Structure-Activity Relationship
17.
J Synchrotron Radiat ; 21(Pt 1): 111-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24365924

ABSTRACT

Strained semiconductors are ubiquitous in microelectronics and microelectromechanical systems, where high local stress levels can either be detrimental for their integrity or enhance their performance. Consequently, local probes for elastic strain are essential in analyzing such devices. Here, a scanning X-ray sub-microprobe experiment for the direct measurement of deformation over large areas in single-crystal thin films with a spatial resolution close to the focused X-ray beam size is presented. By scanning regions of interest of several tens of micrometers at different rocking angles of the sample in the vicinity of two Bragg reflections, reciprocal space is effectively mapped in three dimensions at each scanning position, obtaining the bending, as well as the in-plane and out-of-plane strain components. Highly strained large-area Ge structures with applications in optoelectronics are used to demonstrate the potential of this technique and the results are compared with finite-element-method models for validation.

18.
ACS Nano ; 7(12): 10912-9, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24245613

ABSTRACT

Nitrogen-vacancy (NV) color centers in nanodiamonds are highly promising for bioimaging and sensing. However, resolving individual NV centers within nanodiamond particles and the controlled addressing and readout of their spin state has remained a major challenge. Spatially stochastic super-resolution techniques cannot provide this capability in principle, whereas coordinate-controlled super-resolution imaging methods, like stimulated emission depletion (STED) microscopy, have been predicted to fail in nanodiamonds. Here we show that, contrary to these predictions, STED can resolve single NV centers in 40-250 nm sized nanodiamonds with a resolution of ≈10 nm. Even multiple adjacent NVs located in single nanodiamonds can be imaged individually down to relative distances of ≈15 nm. Far-field optical super-resolution of NVs inside nanodiamonds is highly relevant for bioimaging applications of these fluorescent nanolabels. The targeted addressing and readout of individual NV(-) spins inside nanodiamonds by STED should also be of high significance for quantum sensing and information applications.


Subject(s)
Microscopy/methods , Nanodiamonds/chemistry , Nitrogen/chemistry , Biosensing Techniques , Diagnostic Imaging , Microscopy, Confocal , Microscopy, Fluorescence , Models, Theoretical , Nanotechnology , Quantum Theory , Stochastic Processes
19.
Epigenetics Chromatin ; 6(1): 27, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23947532

ABSTRACT

BACKGROUND: Histone deacetylases (HDACs) play a critical role in the maintenance of genome stability. Class I HDACs, histone deacetylase 1 and 2 (Hdac1 and Hdac2) are recruited to the replication fork by virtue of their interactions with the replication machinery. However, functions for Hdac1 and Hdac2 (Hdacs1,2) in DNA replication are not fully understood. RESULTS: Using genetic knockdown systems and novel Hdacs1,2-selective inhibitors, we found that loss of Hdacs1,2 leads to a reduction in the replication fork velocity, and an increase in replication stress response culminating in DNA damage. These observed defects are due to a direct role for Hdacs1,2 in DNA replication, as transcription of genes involved in replication was not affected in the absence of Hdacs1,2. We found that loss of Hdacs1,2 functions increases histone acetylation (ac) on chromatin in S-phase cells and affects nascent chromatin structure, as evidenced by the altered sensitivity of newly synthesized DNA to nuclease digestion. Specifically, H4K16ac, a histone modification involved in chromatin decompaction, is increased on nascent chromatin upon abolishing Hdacs1,2 activities. It was previously shown that H4K16ac interferes with the functions of SMARCA5, an ATP-dependent ISWI family chromatin remodeler. We found SMARCA5 also associates with nascent DNA and loss of SMARCA5 decreases replication fork velocity similar to the loss or inhibition of Hdacs1,2. CONCLUSIONS: Our studies reveal important roles for Hdacs1,2 in nascent chromatin structure maintenance and regulation of SMARCA5 chromatin-remodeler function, which together are required for proper replication fork progression and genome stability in S-phase.

20.
Nanoscale ; 5(18): 8466-71, 2013 Sep 21.
Article in English | MEDLINE | ID: mdl-23852161

ABSTRACT

We report an efficient colloidal synthesis of KTiOPO4 (KTP) nanocrystals with excellent crystallinity and the direct observation of optical second-harmonic generation (SHG) from discrete KTP nanocrystals in neurons cultured from mammalian brain cortex. Direct internalization and monitoring of these nanoparticles was successfully achieved without limitations from cytotoxicity, bleaching and blinking emission.


Subject(s)
Nanoparticles/chemistry , Neurons/chemistry , Phosphates/chemistry , Titanium/chemistry , Animals , Cells, Cultured , Cerebral Cortex/cytology , Colloids/chemistry , Fluorescent Dyes/chemistry , Mice , Microscopy, Fluorescence , Neurons/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...