Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-517882

ABSTRACT

Experimental findings for SARS-CoV-2 related to the glycan biochemistry of coronaviruses indicate that attachments from spike protein to glycoconjugates on the surfaces of red blood cells (RBCs), other blood cells and endothelial cells are key to the infectivity and morbidity of COVID-19. To provide further insight into these glycan attachments and their potential clinical relevance, the classic hemagglutination (HA) assay was applied using spike protein from the Wuhan, Alpha, Delta and Omicron B.1.1.529 lineages of SARS-CoV-2 mixed with human RBCs. The electrostatic potential of the central region of spike protein from these four lineages was studied through molecular modeling simulations. Inhibition of spike protein-induced HA was tested using the macrocyclic lactone ivermectin (IVM), which is indicated to bind strongly to SARS-CoV-2 spike protein glycan sites. The results of these experiments were, first, that spike protein from these four lineages of SARS-CoV-2 induced HA. Omicron induced HA at a significantly lower threshold concentration of spike protein than for the three prior lineages and was much more electropositive on its central spike protein region. IVM blocked HA when added to RBCs prior to spike protein and reversed HA when added afterwards. These results validate and extend prior findings on the role of glycan bindings of viral spike protein in COVID-19. They furthermore suggest therapeutic options using competitive glycan-binding agents such as IVM and may help elucidate rare serious adverse effects (AEs) associated with COVID-19 mRNA vaccines which use spike protein as the generated antigen.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22271812

ABSTRACT

Multiple SARS-CoV-2 variants have successively, or concommitantly spread worldwide since summer 2020. A few co-infections with different variants were reported and genetic recombinations, common among coronaviruses, were reported or suspected based on co-detection of signature mutations of different variants in a given genome. Here we report three infections in southern France with a Delta 21J/AY.4-Omicron 21K/BA.1 "Deltamicron" recombinant. The hybrid genome harbors signature mutations of the two lineages, supported by a mean sequencing depth of 1,163-1,421 reads and mean nucleotide diversity of 0.1-0.6%. It is composed of the near full-length spike gene (from codons 156-179) of an Omicron 21K/BA.1 variant in a Delta 21J/AY.4 lineage backbone. Importantly, we cultured an isolate of this recombinant and sequenced its genome. It was observed by scanning electron microscopy. As it is misidentified with current variant screening qPCR, we designed and implemented for routine diagnosis a specific duplex qPCR. Finally, structural analysis of the recombinant spike suggested its hybrid content could optimize viral binding to the host cell membrane. These findings prompt further studies of the virological, epidemiological, and clinical features of this recombinant.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22270495

ABSTRACT

The SARS-CoV-2 21K/BA.1, 21L/BA.2, and BA.3 Omicron variants have recently emerged worldwide. To date, the 21L/BA.2 Omicron variant has remained very minority globally but became predominant in Denmark instead of the 21K/BA.1 variant. Here we describe the first cases diagnosed with this variant in south-eastern France. We identified thirteen cases using variant-specific qPCR and next-generation sequencing between 28/11/2021 and 31/01/2022, the first two cases being diagnosed in travellers returning from Tanzania. Overall, viral genomes displayed a mean ({+/-}standard deviation) number of 65.9{+/-}2.5 (range, 61-69) nucleotide substitutions and 31.0{+/-}8.3 (27-50) nucleotide deletions, resulting in 49.6{+/-}2.2 (45-52) amino acid substitutions (including 28 in the spike protein) and 12.4{+/-}1.1 (12-15) amino acid deletions. Phylogeny showed the distribution in three different clusters of these genomes, which were most closely related to genomes from England and South Africa, from Singapore and Nepal, or from France and Denmark. Structural predictions pointed out a significant enlargement and flattening of the 21L/BA.2 N-terminal domain surface compared with that of the 21K/BA.2 Omicron variant, which may facilitate initial viral interactions with lipid rafts. Close surveillance is needed at global, country and center scales to monitor the incidence and clinical outcome of the 21L/BA.2 Omicron variant.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-22268715

ABSTRACT

The nature and dynamics of mutations associated with the emergence, spread and vanishing of SARS-CoV-2 variants causing successive waves are complex1-5. We determined the kinetics of the most common French variant ("Marseille-4") for 10 months since its onset in July 20205. Here, we analysed and classified into subvariants and lineages 7,453 genomes obtained by next-generation sequencing. We identified two subvariants, Marseille-4A, which contains 22 different lineages of at least 50 genomes, and Marseille-4B. Their average lifetime was 4.1{+/-}1.4 months, during which 4.1{+/-}2.6 mutations accumulated. Growth rate was 0.079{+/-}0.045, varying from 0.010 to 0.173. All the lineages exhibited a "gamma" distribution. Several beneficial mutations at unpredicted sites initiated a new outbreak, while the accumulation of other mutations resulted in more viral heterogenicity, increased diversity and vanishing of the lineages. Marseille-4B emerged when the other Marseille-4 lineages vanished. Its ORF8 gene was knocked out by a stop codon, as reported in several mink lineages and in the alpha variant. This subvariant was associated with increased hospitalization and death rates, suggesting that ORF8 is a nonvirulence gene. We speculate that the observed heterogenicity of a lineage may predict the end of the outbreak.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21268174

ABSTRACT

SARS-CoV-2 variants have become a major virological, epidemiological and clinical concern, particularly with regard to the risk of escape from vaccine-induced immunity. Here we describe the emergence of a new variant. For twelve SARS-CoV-positive patients living in the same geographical area of southeastern France, qPCR testing that screen for variant-associated mutations showed an atypical combination. The index case returned from a travel in Cameroon. The genomes were obtained by next-generation sequencing with Oxford Nanopore Technologies on GridION instruments within {approx}8 h. Their analysis revealed 46 mutations and 37 deletions resulting in 30 amino acid substitutions and 12 deletions. Fourteen amino acid substitutions, including N501Y and E484K, and 9 deletions are located in the spike protein. This genotype pattern led to create a new Pangolin lineage named B.1.640.2, which is a phylogenetic sister group to the old B.1.640 lineage renamed B.1.640.1. Both lineages differ by 25 nucleotide substitutions and 33 deletions. The mutation set and phylogenetic position of the genomes obtained here indicate based on our previous definition a new variant we named "IHU". These data are another example of the unpredictability of the emergence of SARS-CoV-2 variants, and of their introduction in a given geographical area from abroad.

SELECTION OF CITATIONS
SEARCH DETAIL
...