Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol Evol ; 15(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37652057

ABSTRACT

Transposable elements (TEs) are parasite DNA sequences that are able to move and multiply along the chromosomes of all genomes. They can be controlled by the host through the targeting of silencing epigenetic marks, which may affect the chromatin structure of neighboring sequences, including genes. In this study, we used transcriptomic and epigenomic high-throughput data produced from ovarian samples of several Drosophila melanogaster and Drosophila simulans wild-type strains, in order to finely quantify the influence of TE insertions on gene RNA levels and histone marks (H3K9me3 and H3K4me3). Our results reveal a stronger epigenetic effect of TEs on ortholog genes in D. simulans compared with D. melanogaster. At the same time, we uncover a larger contribution of TEs to gene H3K9me3 variance within genomes in D. melanogaster, which is evidenced by a stronger correlation of TE numbers around genes with the levels of this chromatin mark in D. melanogaster. Overall, this work contributes to the understanding of species-specific influence of TEs within genomes. It provides a new light on the considerable natural variability provided by TEs, which may be associated with contrasted adaptive and evolutionary potentials.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , DNA Transposable Elements , Drosophila simulans/genetics , Chromatin , Transcriptome
2.
G3 (Bethesda) ; 9(3): 855-865, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30658967

ABSTRACT

All genomes contain repeated sequences that are known as transposable elements (TEs). Among these are endogenous retroviruses (ERVs), which are sequences similar to retroviruses and are transmitted across generations from parent to progeny. These sequences are controlled in genomes through epigenetic mechanisms. At the center of the epigenetic control of TEs are small interfering RNAs of the piRNA class, which trigger heterochromatinization of TE sequences. The tirant ERV of Drosophila simulans displays intra-specific variability in copy numbers, insertion sites, and transcription levels, providing us with a well-suited model to study the dynamic relationship between a TE family and the host genome through epigenetic mechanisms. We show that tirant transcript amounts and piRNA amounts are positively correlated in ovaries in normal conditions, unlike what was previously described following divergent crosses. In addition, we describe tirant insertion polymorphism in the genomes of three D. simulans wild-type strains, which reveals a limited number of insertions that may be associated with gene transcript level changes through heterochromatin spreading and have phenotypic impacts. Taken together, our results participate in the understanding of the equilibrium between the host genome and its TEs.


Subject(s)
DNA Transposable Elements , Drosophila simulans/genetics , Endogenous Retroviruses/genetics , Epigenesis, Genetic , Genome, Insect , Host-Pathogen Interactions , Animals , Drosophila simulans/virology , Endogenous Retroviruses/physiology , Female , RNA, Small Interfering/metabolism
3.
Curr Biol ; 27(2): R53-R55, 2017 01 23.
Article in English | MEDLINE | ID: mdl-28118585

ABSTRACT

Wolbachia are widespread endosymbiotic bacteria found in terrestrial arthropods and filarial nematodes [1]. In insects, Wolbachia generally rely on diverse strategies to manipulate their host's reproduction and favor their own vertical transmission through infected eggs [2]. One such mechanism is a sterility syndrome called 'cytoplasmic incompatibility'. Cytoplasmic incompatibility occurs at fertilization, when a spermatozoon from a Wolbachia-infected male fertilizes an uninfected egg. In this case, sperm-derived chromosomes fail to separate normally at the first zygotic division, thus preventing the development of a diploid embryo [3]. Moreover, the presence of Wolbachia in females rescues the integration of paternal chromosomes in the zygote and allows the development of a viable, infected individual. Although the molecular basis of cytoplasmic incompatibility is still unknown, a current model implies the existence of Wolbachia-induced reversible modifications on sperm DNA or chromatin that must be eliminated or neutralized shortly after fertilization by rescuing Wolbachia factors present in infected eggs [4]. In a recent Current Biology paper [5], Stéphanie Pontier and François Schweisguth recently challenged this model by proposing that Wolbachia perturbs a pheromone-based communication between male and female pupae in Drosophila melanogaster and Drosophila simulans, which controls the "compatibility range" of male and female gametes. However, we fail to detect any influence of pupal communication on cytoplasmic incompatibility in Drosophila simulans as well as in the parasitoid wasp Nasonia vitripennis. Our results thus question the robustness of their model.


Subject(s)
Wolbachia , Animals , Cytoplasm , Drosophila , Drosophila melanogaster , Female , Male , Pupa
SELECTION OF CITATIONS
SEARCH DETAIL
...