Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Bioprospect ; 12(1): 20, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35641706

ABSTRACT

From aerial parts of Austroeupatorium inulifolium was isolated the ent-nor-furano triol labdane austroeupatol 1. The compound 1 was treated with IBX showing an unexpected selectivity at the potentially oxidizable sites of the substrate yielding the 2-oxoaustroeupatol (2) and 2,19-dioxoaustroeupatol (3). The treatment of 2 with sodium periodate yields a heterocyclic derivative (ε-caprolactone derivate 4) formed by oxidative cleavage and unexpected intramolecular attack of the hydroxymethylene (C-19) oxygen to the ketonic carbon (C-2). A plausible mechanistic pathway for the obtention of compound 4 is proposed.

2.
Biomolecules ; 9(8)2019 07 29.
Article in English | MEDLINE | ID: mdl-31362436

ABSTRACT

During maturation and ageing in oak barrels polyphenolic compounds from oak wood, and particularly C-glucosidic ellagitannins, can be released from wood to the wine. These ellagitannins can be involved in oxidation reactions, affecting the wine's organoleptic properties such as astringency. In this study C-glucosidic ellagitannins and flavano-ellagitannins, acutissimins A and B and epiacutissimins A and B, as well as mongolicain A, which is the result compound of acutissimin A oxidation, were identified and quantified. The quantification was carried out by HPLC-UV-MS in 185 commercial samples from different cultivar areas (Bordeaux and Rioja), different barrel oak wood (French oak barrels and American oak barrels) and different ageing periods. The results show differences between the two zones in terms of compound concentrations. Moreover, the ageing process in bottle for Bordeaux wines are unlike Rioja wines behavior in bottle.


Subject(s)
Hydrolyzable Tannins/analysis , Hydrolyzable Tannins/chemistry , Wine/analysis , Oxidation-Reduction , Time Factors , Wood/chemistry
3.
Drug Res (Stuttg) ; 69(7): 374-373, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30134445

ABSTRACT

Anti-herpes simplex virus (HSV-1) activity of 9 ellagitannins, including 6 natural compounds (castalin, vescalin, acutissimin A, epiacutissimins A and B, mongolicain) and 3 vescalagin synthetic derivatives (VgSBuSH, VgSOctSH, VgOMe), and 13 gallotannin-type compounds [Gal-01A, Gal-01B, Gal-02A, Gal-02B, Gal-03M, Gal-04A, Gal-04B, Gal-05M, Gal-07, Gal-08, Gal-09, Gal-11M (tannic acid), as well as Gal-12 (gallic acid), Gal-13 and Gal-14 (ellagic acid)] were examined in MDBK monolayer cell culture. Their antiviral activity was determined by the cytopathic effect (CPE) inhibition test and their cytotoxicity was evaluated through the neutral red uptake assay. In general, the series of ellagitannins showed a significantly stronger activity against HSV-1 replication than that of the gallotannins. Six of the tested ellagitannins manifested a well-pronounced activity: epiacutissimin B (selectivity index, SI>60.6), epiacutissimin A (SI>55.5), acutissimin A (SI>34.8), mongolicain (SI>32.5), VgSBuSH (SI>24.6) and VgOMe (SI>22.0). Four gallotannin-type compounds inhibited the replication of HSV-1 at a lower but still significant extent: Gal-04B (SI>35.7), Gal-04A (SI>28.5), Gal-11M (tannic acid) (SI>25) and Gal-05M (SI=15.6).


Subject(s)
Herpesvirus 1, Human/drug effects , Hydrolyzable Tannins/pharmacology , Virus Replication/drug effects , Animals , Cattle , Cell Line , Herpesvirus 1, Human/physiology , Microbial Sensitivity Tests
4.
Phytochemistry ; 125: 65-72, 2016 May.
Article in English | MEDLINE | ID: mdl-26899362

ABSTRACT

Ellagitannins are a subclass of hydrolysable tannins that have been suggested to function as defensive compounds of plants against herbivores. However, it is known that the conditions in the digestive tracts of different herbivores are variable, so it seems reasonable to anticipate that the reactivities and modes of actions of these ingested defensive compounds would also be different. A previous study on a few ellagitannins has shown that these polyphenolic compounds are highly oxidizable at high pH and that their bioactivity can be attributed to certain structural features. Herein, the activities of 13 ellagitannins using the deoxyribose assay were measured. The results provided information about the anti-oxidant, pro-oxidant and metal chelating properties of ellagitannins. Surprisingly, many of the tested ellagitannins exhibited pro-oxidant activities even at neutral pH and only moderate to low radical scavenging activities, although the metal chelating capacities of all tested ellagitannins were relatively high.


Subject(s)
Antioxidants/metabolism , Hydrolyzable Tannins/metabolism , Oxidants/metabolism , Antioxidants/chemistry , Hydrolyzable Tannins/chemistry , Oxidants/chemistry , Oxidation-Reduction , Reactive Oxygen Species/chemistry
5.
J Agric Food Chem ; 61(47): 11560-8, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24215431

ABSTRACT

During red wine maturation in the presence of oak wood, reactions involving anthocyanins and ellagitannins might affect wine organoleptic properties such as color and astringency. In this work, the condensation reaction between myrtillin (delphinidin 3-O-glucoside) and vescalagin has been performed to determine the behavior of this anthocyanin in this kind of reaction and to assess the possible impact of such a reaction in wine color modulation. Two different hybrid pigments have been hemisynthetized and characterized by HPLC-DAD-MS and NMR spectroscopy. These pigments have been identified as 1-deoxyvescalagin-(1ß→8)-myrtillin (major) and 1-deoxyvescalagin-(1ß→6)-myrtillin (minor). The minor pigment could be formed both by the condensation reaction and by a regioisomerization process from the major pigment. Moreover, the chromatic properties of these pigments have been studied and compared to those of myrtillin. The hybrid pigments showed an important bathochromic shift (ca. 20 nm) in the maximum absorbance wavelength and lower molar absorption coefficients.


Subject(s)
Anthocyanins/chemistry , Glucosides/chemistry , Hydrolyzable Tannins/chemistry , Pigments, Biological/chemistry , Wine , Color , Mass Spectrometry , Nuclear Magnetic Resonance, Biomolecular , Quercus , Wood
6.
Angew Chem Int Ed Engl ; 52(44): 11530-3, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24039115

ABSTRACT

Under the auspices of Bacchus! Acutissimins, natural flavano-ellagitannins, occur in oak-aged wine as a result of a diastereoselective condensation reaction of the flavan-3-ol catechin, a component of grapes, with the C-glucosidic ellagitannin vescalagin, found in oak. The acutissimins are further converted into natural mongolicains and analogues of camelliatannin G in a remarkably chemoselective fashion by simple aerobic oxidation.


Subject(s)
Anticarcinogenic Agents/pharmacokinetics , Antioxidants/pharmacokinetics , Hydrolyzable Tannins/chemistry , Wine/analysis , Biomimetics , Diet , Humans , Oxidation-Reduction
7.
Mol Pharmacol ; 82(1): 134-41, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22528119

ABSTRACT

Polyphenolic ellagitannins are natural compounds that are often associated with the therapeutic activity of plant extracts used in traditional medicine. They display cancer-preventing activity in animal models by a mechanism that remains unclear. Potential targets have been proposed, including DNA topoisomerases II (Top2). Top2α and Top2ß, the two isoforms of the human Top2, play a crucial role in the regulation of replication, transcription, and chromosome segregation. They are the target of anticancer agents used in the clinic such as anthracyclines (e.g., doxorubicin) or the epipodophyllotoxin etoposide. It was recently shown that the antitumor activity of etoposide was due primarily to the inhibition of Top2α, whereas inhibition of Top2ß was responsible for the development of secondary malignancies, pointing to the need for more selective Top2α inhibitors. Here, we show that the polyphenolic ellagitannin vescalagin preferentially inhibits the decatenation activity of Top2α in vitro, by a redox-independent mechanism. In CEM cells, we also show that transient small interfering RNA-mediated down-regulation of Top2α but not of Top2ß conferred a resistance to vescalagin, indicating that the α isoform is a preferential target. We further confirmed that Top2α inhibition was due to a catalytic inhibition of the enzyme because it did not induce DNA double-strand breaks in CEM-treated cells but prevented the formation of Top2α- rather than Top2ß-DNA covalent complexes induced by etoposide. To our knowledge, vescalagin is the first example of a catalytic inhibitor for which cytotoxicity is due, at least in part, to the preferential inhibition of Top2α.


Subject(s)
Antigens, Neoplasm/metabolism , Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Hydrolyzable Tannins/pharmacology , Catalysis , Cell Proliferation/drug effects , DNA Breaks, Double-Stranded , DNA, Kinetoplast/metabolism , Down-Regulation/drug effects , Etoposide/pharmacology , Humans , Oxidation-Reduction/drug effects , Poly-ADP-Ribose Binding Proteins , Protein Isoforms/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...