Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gut ; 64(12): 1961-71, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25429051

ABSTRACT

OBJECTIVE: To assess a new adenovirus-based immunotherapy as a novel treatment approach to chronic hepatitis B (CHB). METHODS: TG1050 is a non-replicative adenovirus serotype 5 encoding a unique large fusion protein composed of a truncated HBV Core, a modified HBV Polymerase and two HBV Envelope domains. We used a recently described HBV-persistent mouse model based on a recombinant adenovirus-associated virus encoding an over length genome of HBV that induces the chronic production of HBsAg, HBeAg and infectious HBV particles to assess the ability of TG1050 to induce functional T cells in face of a chronic status. RESULTS: In in vitro studies, TG1050 was shown to express the expected large polyprotein together with a dominant, smaller by-product. Following a single administration in mice, TG1050 induced robust, multispecific and long-lasting HBV-specific T cells detectable up to 1 year post-injection. These cells target all three encoded immunogens and display bifunctionality (i.e., capacity to produce both interferon γ and tumour necrosis factor α as well as cytolytic functions). In addition, control of circulating levels of HBV DNA and HBsAg was observed while alanine aminotransferase levels remain in the normal range. CONCLUSIONS: Injection of TG1050 induced both splenic and intrahepatic functional T cells producing cytokines and displaying cytolytic activity in HBV-naïve and HBV-persistent mouse models together with significant reduction of circulating viral parameters. These results warrant clinical evaluation of TG1050 in the treatment of CHB.


Subject(s)
Adenoviridae/metabolism , CD8-Positive T-Lymphocytes/metabolism , DNA, Viral/blood , Hepatitis B virus/immunology , Hepatitis B, Chronic/therapy , Immunotherapy/methods , Viral Fusion Proteins/immunology , Adenoviridae/classification , Alanine Transaminase/blood , Animals , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/immunology , Disease Models, Animal , Gene Products, env/genetics , Gene Products, env/immunology , Genetic Vectors , HLA-A2 Antigen/genetics , Hepatitis B Core Antigens/genetics , Hepatitis B Core Antigens/immunology , Hepatitis B Surface Antigens/blood , Hepatitis B, Chronic/blood , Interferon-gamma/blood , Lymphocyte Count , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Time Factors , Tumor Necrosis Factor-alpha/blood , Viral Fusion Proteins/genetics , Viral Load
2.
J Infect Dis ; 208(6): 1008-19, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23776192

ABSTRACT

BACKGROUND: We explored the concept of heterologous prime/boost vaccination using 2 therapeutic vaccines currently in clinical development aimed at treating chronically infected hepatitis C virus (HCV) patients: prime with a DNA-based vaccine expressing HCV genotype 1a NS3/4A proteins (ChronVac-C) and boost with a modified vaccinia virus Ankara vaccine expressing genotype 1b NS3/4/5B proteins (MVATG16643). METHODS: Two ChronVac-C immunizations 4 weeks apart were delivered intramuscularly in combination with in vivo electroporation and subsequently 5 or 12 weeks later boosted by 3 weekly subcutaneous injections of MVATG16643. Two mouse strains were used, and we evaluated quality, magnitude, and functionality of the T cells induced. RESULTS: DNA prime/MVA boost regimen induced significantly higher levels of interferon γ (IFN-γ) or interleukin 2 (IL-2) ELISpot responses compared with each vaccine alone, independent of the time of analysis and the time interval between vaccinations. Both CD8⁺ and CD4⁺ T-cell responses as well as the spectrum of epitopes recognized was improved. A significant increase in polyfunctional IFN-γ/tumor necrosis factor α (TNF-α)/CD107a⁺ CD8⁺ T cells was detected following ChronVac-C/MVATG16643 vaccination (from 3% to 25%), and prime/boost was the only regimen that activated quadrifunctional T cells (IFN-γ/TNF-α/CD107a/IL-2). In vivo functional protective capacity of DNA prime/MVA boost was demonstrated in a Listeria-NS3-1a challenge model. CONCLUSIONS: We provide a proof-of-concept that immunogenicity of 2 HCV therapeutic vaccines can be improved using their combination, which merits further clinical development.


Subject(s)
Antibody Formation , Hepatitis C/prevention & control , Vaccination/methods , Viral Hepatitis Vaccines/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Genotype , Hepacivirus , Hepatitis C/immunology , Immunization, Secondary , Interferon-gamma/blood , Interleukin-2/blood , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Necrosis Factor-alpha/blood , Vaccines, DNA/immunology , Viral Hepatitis Vaccines/genetics
3.
Am J Respir Cell Mol Biol ; 36(5): 534-40, 2007 May.
Article in English | MEDLINE | ID: mdl-17158359

ABSTRACT

Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring cancer in sheep, with clinical, radiologic, and histopathologic features similar to that of human pneumonic-type bronchioloalveolar carcinoma. JSRV (Jaagsiekte Sheep RetroVirus) is the etiologic agent of this contagious lung cancer in sheep. Cells involved in the tumor derive from alveolar type II cells and Clara cells, epithelial cells of the distal respiratory tract. These cells are the major site for viral expression in JSRV-infected animals. Recent studies clearly described the oncogenic properties of the JSRV envelope protein both in vitro and in vivo. Interestingly, the cellular pathways involved in the transformation process seem to be dependent of the origin and type of the cell used. In order to investigate the specific interactions between JSRV and alveolar type II cells, we developed an in vitro experimental model in which lung epithelial cells were isolated from OPA and control lungs. Cells in culture expressed alveolar type II cell specific markers such as surfactant protein (SP)-A, SP-C, and a high alkaline phosphatase activity. Alveolar Type II cells derived from tumoral lungs showed a proliferative advantage and expressed the JSRV virus. The reverse transcriptase activity decreased over passages in monolayer culture conditions, but was efficiently maintained in three-dimensional culture conditions. We thus report on the first in vitro system whereby alveolar type II cells from OPA were efficiently maintained in culture and stably expressed JSRV. This novel experimental model will set up the stage for elucidating lung epithelial transformation in the JSRV-induced tumor.


Subject(s)
Jaagsiekte sheep retrovirus/genetics , Lung Neoplasms/veterinary , Pulmonary Adenomatosis, Ovine/virology , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , Animals , Biomarkers/metabolism , Cell Separation , Cells, Cultured , Cellular Senescence , DNA, Viral/analysis , DNA, Viral/genetics , Gene Expression Regulation, Viral , Jaagsiekte sheep retrovirus/enzymology , Jaagsiekte sheep retrovirus/isolation & purification , Lung Neoplasms/pathology , Lung Neoplasms/virology , Models, Biological , Pulmonary Alveoli/ultrastructure , Pulmonary Surfactant-Associated Protein A/metabolism , Pulmonary Surfactant-Associated Protein C/metabolism , RNA-Directed DNA Polymerase/metabolism , Serial Passage , Sheep, Domestic
SELECTION OF CITATIONS
SEARCH DETAIL
...