Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 39(2): 227-234, 2023 02.
Article in English | MEDLINE | ID: mdl-36707313

ABSTRACT

OBJECTIVES: Ceramic dental prostheses exhibit increasing failure rates with service time. In particular, veneered crowns and bridges are susceptible to chipping and other fracture modes of failure. The purpose of this manuscript is to introduce a computational methodology and associated software that can predict the time-dependent probability of failure for ceramic prostheses and subsequently design proof test protocols to significantly enhance their reliabilities and lifetimes. METHODS: Transient reliability and corresponding proof testing theories are introduced. These theories are coded in the Ceramic Analysis and Reliability Evaluation of Structures (CARES/Life) code. This software will be used to demonstrate the predictive capability of the theory as well as its use in designing proof test protocols to significantly improve the reliability (survival probability) and lifetime for dental prostheses. A three-unit fixed dental prosthesis (FDP) with zirconia core (ZirCAD) and veneering ceramic (ZirPress) are used to compare the predicted probabilities of failure to general clinical results. In addition, the capability to use proof testing to significantly improve the performance (reliability and lifetime) for this restoration is demonstrated. RESULTS: The probability of failure, Pf, after five years without proof testing is predicted to be 0.337. This compares to clinical studies showing the failure rate to be between 0.2 and 0.23 after 5 years. After 10 years, reference 18 found the clinical failure rate for similar bridges (but not the same) to be up to 0.28 compared to the predicted Pf of 0.38. The difference may be due to the analysis applying the load at an inclination of 75° which is more critical than vertical loading. In addition, clinical studies often report a simple survival rate instead of using Kaplan-Meier analysis to properly account for late enrollees. Therefore, true clinical failure rates may be higher than reported and may more closely match the predictions of this manuscript. The effectiveness of proof testing increases with selecting materials less susceptible to slow crack growth (higher SCG exponent, N). For example, proof testing the ZirPress glass-veneered bridges with N = 43.4 analyzed in this manuscript at 400 N bite force for 1 s which induces a failure rate during proof testing of 0.31, reduces the Pf of bridges not proof tested from 0.45 to an attenuated-proof-tested probability of failure Pfa of 0.21 after 20 years of usage. If another material is selected with improved resistance to SCG of N = 60 and the same loading conditions, the failure rate for the proof tested bridges after 20 years of service drops to 2 in 10,000 from 2.4 in 100 had they been not proof tested. The failure rate during proof testing for this material would be 5.1 in 100. Proof testing a material with absolutely no susceptibility to SCG at the same service load (in this case 285 N, not even the 400 N load used above) results in 0 % failure rate and is of course independent of time. SIGNIFICANCE: The transient reliability and proof test theory presented in this paper and associated computational software CARES/Life were successful in predicting the performance of ceramic dental restorations when compared to clinical data. Well-designed proof test protocols combined with proper material selection can significantly enhance the reliabilities and lifetimes of ceramic prostheses. This proof test capability can be a translational technology if properly applied to dental restorations.


Subject(s)
Ceramics , Crowns , Reproducibility of Results , Zirconium , Glass , Dental Restoration Failure , Dental Porcelain , Materials Testing , Dental Veneers , Dental Stress Analysis , Dental Prosthesis Design
2.
J Biomed Mater Res B Appl Biomater ; 109(9): 1360-1368, 2021 09.
Article in English | MEDLINE | ID: mdl-33527747

ABSTRACT

This article describes the protocol for determining the cause of failure for retrieved failed implant supported fixed dental prostheses (FDPs) in a clinical study of three-unit bridges. The results of loading of flexure bars of different veneer compositions at different stress rates were presented for two veneer materials (leucite reinforced and fluorapatite glass-ceramic veneers) and a Y-TZP core zirconia ceramic used in the clinical study. From these results, the strengths of the fast loading conditions were used to determine the fracture toughness of these materials. Fractal dimension measurements of the flexure bars and selected FDPs of the same materials demonstrated that the values were the same for both the bars and the FDPs. This allowed the use of fracture toughness values from the flexure bars to determine the strengths of the FDPs. The failure analysis of clinically obtained FDP replicates to determine the size of the fracture initiating cracks was then performed. Using the information from the flexure bars and the size of the fracture initiating cracks for the failed FDPs, the strengths of the FDPs were determined. The clinical failures were determined to be most likely the result of repeated crack growth due to initial overload and continuous use after initial cracking.


Subject(s)
Dental Prosthesis/statistics & numerical data , Tissue Scaffolds/chemistry , Aluminum Silicates/chemistry , Apatites/chemistry , Ceramics/chemistry , Dental Materials , Dental Stress Analysis , Humans , Linear Models , Reproducibility of Results , Tissue Engineering , Zirconium/chemistry
3.
Dent Mater ; 29(11): 1132-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24060349

ABSTRACT

UNLABELLED: Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. OBJECTIVE: The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. MATERIALS AND METHODS: Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). RESULTS: Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CONCLUSION: CARES/Life results support the proposed crown design and load orientation hypotheses. SIGNIFICANCE: The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures.


Subject(s)
Ceramics , Crowns , Dental Porcelain/chemistry , Glass , Probability , Finite Element Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...