Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 33: 3059-3074, 2024.
Article in English | MEDLINE | ID: mdl-38656840

ABSTRACT

In modern neuroscience, observing the dynamics of large populations of neurons is a critical step of understanding how networks of neurons process information. Light-field microscopy (LFM) has emerged as a type of scanless, high-speed, three-dimensional (3D) imaging tool, particularly attractive for this purpose. Imaging neuronal activity using LFM calls for the development of novel computational approaches that fully exploit domain knowledge embedded in physics and optics models, as well as enabling high interpretability and transparency. To this end, we propose a model-based explainable deep learning approach for LFM. Different from purely data-driven methods, the proposed approach integrates wave-optics theory, sparse representation and non-linear optimization with the artificial neural network. In particular, the architecture of the proposed neural network is designed following precise signal and optimization models. Moreover, the network's parameters are learned from a training dataset using a novel training strategy that integrates layer-wise training with tailored knowledge distillation. Such design allows the network to take advantage of domain knowledge and learned new features. It combines the benefit of both model-based and learning-based methods, thereby contributing to superior interpretability, transparency and performance. By evaluating on both structural and functional LFM data obtained from scattering mammalian brain tissues, we demonstrate the capabilities of the proposed approach to achieve fast, robust 3D localization of neuron sources and accurate neural activity identification.

2.
IEEE Signal Process Mag ; 39(2): 58-72, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35261535

ABSTRACT

Understanding how networks of neurons process information is one of the key challenges in modern neuroscience. A necessary step to achieve this goal is to be able to observe the dynamics of large populations of neurons over a large area of the brain. Light-field microscopy (LFM), a type of scanless microscope, is a particularly attractive candidate for high-speed three-dimensional (3D) imaging. It captures volumetric information in a single snapshot, allowing volumetric imaging at video frame-rates. Specific features of imaging neuronal activity using LFM call for the development of novel machine learning approaches that fully exploit priors embedded in physics and optics models. Signal processing theory and wave-optics theory could play a key role in filling this gap, and contribute to novel computational methods with enhanced interpretability and generalization by integrating model-driven and data-driven approaches. This paper is devoted to a comprehensive survey to state-of-the-art of computational methods for LFM, with a focus on model-based and data-driven approaches.

3.
IEEE Trans Comput Imaging ; 6: 1017-1032, 2020.
Article in English | MEDLINE | ID: mdl-32851121

ABSTRACT

Light-field microscopy (LFM) is a type of all-optical imaging system that is able to capture 4D geometric information of light rays and can reconstruct a 3D model from a single snapshot. In this paper, we propose a new 3D localization approach to effectively detect 3D positions of neuronal cells from a single light-field image with high accuracy and outstanding robustness to light scattering. This is achieved by constructing a depth-aware dictionary and by combining it with convolutional sparse coding. Specifically, our approach includes 3 key parts: light-field calibration, depth-aware dictionary construction, and localization based on convolutional sparse coding (CSC). In the first part, an observed raw light-field image is calibrated and then decoded into a two-plane parameterized 4D format which leads to the epi-polar plane image (EPI). The second part involves simulating a set of light-fields using a wave-optics forward model for a ball-shaped volume that is located at different depths. Then, a depth-aware dictionary is constructed where each element is a synthetic EPI associated to a specific depth. Finally, by taking full advantage of the sparsity prior and shift-invariance property of EPI, 3D localization is achieved via convolutional sparse coding on an observed EPI with respect to the depth-aware EPI dictionary. We evaluate our approach on both non-scattering specimen (fluorescent beads suspended in agarose gel) and scattering media (brain tissues of genetically encoded mice). Extensive experiments demonstrate that our approach can reliably detect the 3D positions of granular targets with small Root Mean Square Error (RMSE), high robustness to optical aberration and light scattering in mammalian brain tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...