Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 753400, 2021.
Article in English | MEDLINE | ID: mdl-34675934

ABSTRACT

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation mainly affecting the joints leading to cartilage and bone destruction. The definition of seropositive or seronegative RA is based on the presence or absence of rheumatoid factor (RF) and anti-citrullinated peptide antibodies (ACPAs). Other autoantibodies have been identified in the last decade such as antibodies directed against carbamylated antigens, peptidyl-arginine deiminase type 4 and v-Raf murine sarcoma viral oncogene homologue B. In order to identify relevant autoantigens, we screened a random peptide library (RPL) with pooled IgGs obtained from 50 patients with seronegative RA. Patients' sera were then used in an ELISA test to identify the most frequently recognized peptide among those obtained by screening the RPL. Sera from age- and sex-matched healthy subjects were used as controls. We identified a specific peptide (RA-peptide) recognized by RA patients' sera, but not by healthy subjects or by patients with other immune-mediated diseases. The majority of sera from seronegative and seropositive RA patients (73.8% and 63.6% respectively) contained IgG antibodies directed against the RA-peptide. Interestingly, this peptide shares homology with some self-antigens, such as Protein-tyrosine kinase 2 beta, B cell scaffold protein, Liprin-alfa1 and Cytotoxic T lymphocyte protein 4. Affinity purified anti-RA-peptide antibodies were able to cross react with these autoantigens. In conclusion, we identified a peptide that is recognized by seropositive and, most importantly, by seronegative RA patients' sera, but not by healthy subjects, conferring to this epitope a high degree of specificity. This peptide shares also homology with other autoantigens which can be recognized by autoantibodies present in seronegative RA sera. These newly identified autoantibodies, although present also in a percentage of seropositive RA patients, may be considered as novel serum biomarkers for seronegative RA, which lacks the presence of RF and/or ACPAs.


Subject(s)
Arthritis, Rheumatoid/blood , Autoantibodies/blood , Autoantigens/immunology , Peptide Library , Peptides/blood , Aged , Anti-Citrullinated Protein Antibodies/blood , Antibody Specificity , Arthritis, Rheumatoid/drug therapy , Biomarkers , Cell Line, Tumor , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Female , Humans , Immunoglobulin G/blood , Immunosuppressive Agents/therapeutic use , Lymphocyte Subsets/immunology , Male , Middle Aged , Peptides/chemistry , Rheumatoid Factor/blood , Sensitivity and Specificity , Sequence Homology, Amino Acid , Synoviocytes
2.
Autoimmun Rev ; 19(9): 102616, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32682985

ABSTRACT

Immune Thrombocitopenic Purpura (ITP) is an autoimmune disease characterized by antibody-mediated platelet destruction and variable reduced platelet production. Besides antibody-mediated platelet destruction, new pathogenic mechanisms have been reported to be involved in reducing platelet count. Among these, desialylation is one of the most recent and innovative mechanisms that has been found to be implied, at least in part, in non-antibody mediated platelet clearance. Common Variable Immunodeficiency (CVID) is the most common Primary Immunodeficiency seen in clinical practice. About 25-30% of CVID patients are affected by autoimmune manifestation, among which ITP is the most common. Little is know about pathophysiological mechanisms that lead to ITP in CVID. Given the poor antibody production typical of CVID patients, we aimed at verifying whether platelet desialylation could be responsible for CVID associated thrombocytopenia. According to our results, we may suggest that in CVID patients, ITP is due to a decreased bone marrow platelets production, rather than an increased peripheral platelet destruction, which is more common in patients with primary ITP. An increased platelet desialylation does not appear to be implicated in the thrombocytopenia secondary to CVID, while it is implicated in the pathogenesis of primary ITP. Nevertheless an intriguing aspect has emerged from this study: regardless the presence of thrombocytopenia, the majority of CVID patients present a double platelet population as far as desialylation concerns, whilst no one of the healthy donors and of the patients with primary ITP shows a similar characteristic.


Subject(s)
Common Variable Immunodeficiency , Purpura, Thrombocytopenic, Idiopathic , Antibodies , Blood Platelets/pathology , Common Variable Immunodeficiency/pathology , Common Variable Immunodeficiency/physiopathology , Humans , Purpura, Thrombocytopenic, Idiopathic/pathology , Purpura, Thrombocytopenic, Idiopathic/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...