Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Diabetes Rev ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37921158

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D), a multifaceted metabolic disorder, may cause health tribulations and changes in biochemical blood markers. Other research has examined the relationships between several biomarkers and the risk of T2D. Few studies have examined the relationships between these biomarkers and potential changes to the network of biomarkers associated with diabetes. METHOD: Glycated hemoglobin, or HbA1C, is used to evaluate and track the blood glucose history throughout the previous two to three months of testing. The ability to reflect the cumulative glycemic history of the previous two to three months makes HbA1c an essential biomarker of long-term glycemic control. HbA1c offers a trustworthy indicator of chronic hyperglycemia and strongly correlates with the likelihood of long-term consequences from diabetes. RESULT: Additionally, elevated HbA1c has been recognized as a stand-alone risk factor for patients with and without diabetes developing coronary heart disease and stroke. One HbA1c test offers a wealth of information that makes it a reliable biomarker for the diagnosis and prognosis of diabetes. A clinical examination may be required to establish the connection between diabetes, prediabetes, biochemical blood indicators, age, and body mass index (BMI). CONCLUSION: We observed that diabetes, BMI, age, HbA1c, cholesterol, triglycerides, LDL, VLDL, and HDL were all linked using multivariate analysis.

2.
Curr Diabetes Rev ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37921160

ABSTRACT

INTRODUCTION: Hemoglobin A1c (HbA1c), also known as glycated hemoglobin, is a blood test used to evaluate and track a patient's blood sugar levels over the previous 2-3 months. We have compared the analytical performance of the D10 hemoglobin (HPLC) testing system to that of the immunoturbidimetric technique, which is a light-scattering immunoassay. OBJECTIVES: To assess the clinical risk assessment between two methods (Compare the two Immunoturbidometric methods (AU680) vs HPLC method (D10)) in hyperglycemic patients and assess the acceptability of the respective methods in the clinical biochemistry Laboratory. METHODS: The charge of the globins in Hb was used as the basis for the HPLC method used to measure HbA1c. HPLC detects and quantifies even the tiniest Hb fractions and the full spectrum of Hb variants. HbA1c was measured using the immunoturbidimetric (AU 680 Beckmann coulter analyzer) and high-performance liquid chromatography (HPLC) techniques. Experiments also made use of immunoturbidimetric techniques (using an AU 680 Beckmann coulter analyzer equipment). RESULTS: There is no statistically significant difference in HbA1c readings between male and female patients, as measured by either the Immunoturbidimetric or HPLC techniques. CONCLUSION: The immunoturbidimetric and high-performance liquid chromatography techniques for estimating HbA1c yielded identical results. From the results of this study, we may deduce that both techniques are valid for estimating HbA1c. As a result, it may be suggested that both approaches can be used to estimate HbA1c in diabetic individuals.

SELECTION OF CITATIONS
SEARCH DETAIL
...