Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38445395

ABSTRACT

The role of nitrergic system in modulating the action of psychostimulants on reward processing is well established. However, the relevant anatomical underpinnings and scope of the involved interactions with mesolimbic dopaminergic system have not been clarified. Using immunohistochemistry, we track the changes in neuronal nitric oxide synthase (nNOS) containing cell groups in the animals conditioned to intracranial self-stimulation (ICSS) via an electrode implanted in the lateral hypothalamus-medial forebrain bundle (LH-MFB) area. An increase in the nNOS immunoreactivity was noticed in the cells and fibers in the ventral tegmental area (VTA) and nucleus accumbens shell (AcbSh), the primary loci of the reward system. In addition, nNOS was up-regulated in the nucleus accumbens core (AcbC), vertical limb of diagonal band (VDB), locus coeruleus (LC), lateral hypothalamus (LH), superficial gray layer (SuG) of the superior colliculus, and periaqueductal gray (PAG). The brain tissue fragments drawn from these areas showed a change in nNOS mRNA expression, but in opposite direction. Intracerebroventricular (icv) administration of nNOS inhibitor, 7-nitroindazole (7-NI) showed decreased lever press activity in a dose-dependent manner in ICSS task. While an increase in the dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) efflux was noted in the microdialysates collected from the AcbSh of ICSS rats, pre-administration of 7-NI (icv route) attenuated the response. The study identifies nitrergic centers that probably mediate sensory, cognitive, and motor components of the goal-directed behavior.

2.
Mol Neurobiol ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872356

ABSTRACT

Gut microbiota serves in the development and maintenance of phenotype. However, the underlying mechanisms are still in its infancy. The current study shows epigenetic remodelling in the brain as a causal mechanism in the gut microbiota-brain axis. Like in trauma patients, gut dysbiosis and anxiety were comorbid in adult male Wistar rats subjected to repeated mild traumatic brain injuries (rMTBI). rMTBI caused epigenetic dysregulation of brain-derived neurotrophic factor (Bdnf) expression in the amygdala, owing to the formation of transcriptional co-repressor complex due to dynamic interaction between histone deacetylase and DNA methylation modification at the Bdnf gene promoter. The probiosis after faecal microbiota transplantation (FMT) from healthy naïve rats or by administration of single strain probiotic (SSP), Lactobacillus rhamnosus GG (LGG), recuperated rMTBI-induced anxiety. Concurrently, LGG infusion or naïve FMT also dislodged rMTBI-induced co-repressor complex resulting in the normalization of Bdnf expression and neuronal plasticity as measured by Golgi-Cox staining. Furthermore, sodium butyrate, a short-chain fatty acid, produced neurobehavioural effects similar to naïve FMT or LGG administration. Interestingly, the gut microbiota from rMTBI-exposed rats per se was able to provoke anxiety in naïve rats in parallel with BDNF deficits. Therefore, gut microbiota seems to be causally linked with the chromatin remodelling necessary for neuroadaptations via neuronal plasticity which drives experience-dependent behavioural manifestations.

3.
Mol Neurobiol ; 59(2): 890-915, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34797522

ABSTRACT

Coincident excitation via different sensory modalities encoding objects of positive salience is known to facilitate learning and memory. With a view to dissect the contribution of visual cues in inducing adaptive neural changes, we monitored the lever press activity of a rat conditioned to self-administer sweet food pellets in the presence/absence of light cues. Application of light cues facilitated learning and consolidation of long-term memory. The superior colliculus (SC) of rats trained on light cue showed increased neuronal activity, dendritic branching, and brain-derived neurotrophic factor (BDNF) protein and mRNA expression. Concomitantly, the hippocampus showed augmented neurogenesis as well as BDNF protein and mRNA expression. While intra-SC administration of U0126 (inhibitor of ERK 1/2 and long-term memory) impaired memory formation, lidocaine (local anaesthetic) hindered memory recall. The light cue-dependent sweet food pellet self-administration was coupled with increased efflux of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens shell (AcbSh). In conditioned rats, pharmacological inhibition of glutamatergic signalling in dentate gyrus (DG) reduced lever press activity, as well as DA and DOPAC secretion in the AcbSh. We suggest that the neuroplastic changes in the SC and hippocampus might represent memory engrams sculpted by visual cues encoding reward information.


Subject(s)
Cues , Superior Colliculi , Animals , Hippocampus/metabolism , Nucleus Accumbens/metabolism , Rats , Reward
4.
Mitochondrion ; 61: 11-24, 2021 11.
Article in English | MEDLINE | ID: mdl-34508891

ABSTRACT

Mitochondrial biogenesis in the brain is impaired in various neurological disorders including traumatic brain injury (TBI). The long-lasting effects of TBI may be, in part, attributed to epigenetic mechanisms such as DNA methylation. However, the role of DNA methylation on regulatory elements of nuclear and mitochondrial genome in mitochondrial biogenesis is not known. We examined the epigenetic regulation of mitochondrial transcription factor A (TFAM), and further probed its implications in mitochondrial dysfunction in the hippocampus of rats subjected to repeated mild TBI (rMTBI) using weight drop injury paradigm. rMTBI-induced hypermethylation at TFAM promoter resulted in deficits in its protein levels in mitochondria after immediate (48 h) and protracted (30 d) time points. Further, rMTBI also caused hypomethylation of mitochondrial DNA (mtDNA) promoters (HSP1 and HSP2), which further culminated into low binding of TFAM. rMTBI-induced changes weakened mitochondrial biogenesis in terms of reduced mtDNA-encoded rRNA, mRNA, and protein levels leading to shortages of ATP. To verify the potential role of mtDNA methylation in rMTBI-induced persistent mitochondrial dysfunction, rMTBI-induced rats were treated with methionine, a methyl donor. Methionine treatment restored the methylation levels on HSP1 and HSP2 resulting in efficient binding of TFAM and normalized the rRNA, mRNA, and protein levels. These findings suggest the crucial role of DNA methylation at nuclear and mitochondrial promoter regions in mitochondrial gene expression and ATP activity in the hippocampus after rMTBI.


Subject(s)
Brain Injuries, Traumatic/complications , DNA Methylation/physiology , Hippocampus/metabolism , Hippocampus/pathology , Organelle Biogenesis , Animals , DNA, Mitochondrial/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Male , Methionine/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...