Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 16(4): 2734-8, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26978242

ABSTRACT

Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a terahertz pump-terahertz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by 2 orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results. The model shows that the observed strong linearity is caused by an unexpected red shift of plasmon resonance together with a broadening and weakening of the resonance caused by the transient increase in electron temperature. The model further predicts that even greater resonant enhancement of the nonlinear response can be expected in high-mobility graphene, suggesting that nonlinear graphene plasmonic devices could be promising candidates for nonlinear optical processing.

3.
Nano Lett ; 15(10): 7099-104, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26397718

ABSTRACT

We report here a new type of plasmon resonance that occurs when graphene is connected to a metal. These new plasmon modes offer the potential to incorporate a tunable plasmonic channel into a device with electrical contacts, a critical step toward practical graphene terahertz optoelectronics. Through theory and experiments, we demonstrate, for example, anomalously high resonant absorption or transmission when subwavelength graphene-filled apertures are introduced into an otherwise conductive layer. These tunable plasmon resonances are essential yet missing ingredients needed for terahertz filters, oscillators, detectors, and modulators.

4.
Nano Lett ; 15(7): 4295-302, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-25871698

ABSTRACT

We report a large area terahertz detector utilizing a tunable plasmonic resonance in subwavelength graphene microribbons on SiC(0001) to increase the absorption efficiency. By tailoring the orientation of the graphene ribbons with respect to an array of subwavelength bimetallic electrodes, we achieve a condition in which the plasmonic mode can be efficiently excited by an incident wave polarized perpendicular to the electrode array, while the resulting photothermal voltage can be observed between the outermost electrodes.

5.
Nat Nanotechnol ; 9(10): 814-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25194945

ABSTRACT

Terahertz radiation has uses in applications ranging from security to medicine. However, sensitive room-temperature detection of terahertz radiation is notoriously difficult. The hot-electron photothermoelectric effect in graphene is a promising detection mechanism; photoexcited carriers rapidly thermalize due to strong electron-electron interactions, but lose energy to the lattice more slowly. The electron temperature gradient drives electron diffusion, and asymmetry due to local gating or dissimilar contact metals produces a net current via the thermoelectric effect. Here, we demonstrate a graphene thermoelectric terahertz photodetector with sensitivity exceeding 10 V W(-1) (700 V W(-1)) at room temperature and noise-equivalent power less than 1,100 pW Hz(-1/2) (20 pW Hz(-1/2)), referenced to the incident (absorbed) power. This implies a performance that is competitive with the best room-temperature terahertz detectors for an optimally coupled device, and time-resolved measurements indicate that our graphene detector is eight to nine orders of magnitude faster than those. A simple model of the response, including contact asymmetries (resistance, work function and Fermi-energy pinning) reproduces the qualitative features of the data, and indicates that orders-of-magnitude sensitivity improvements are possible.

6.
Opt Express ; 22(14): 17466-77, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-25090560

ABSTRACT

The nonlinear response of nanoporous silicon optical waveguides is investigated using a novel pump-probe method. In this approach we use a two-frequency heterodyne technique to measure the pump-induced transient change in phase and intensity in a single measurement. We measure a 100 picosecond material response time and report behavior matching a physical model dominated by free-carrier effects significantly stronger than those observed in traditional silicon-based waveguides.

7.
Opt Express ; 21(6): 7041-9, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23546087

ABSTRACT

We demonstrate propagation of terahertz waves confined to a semiconductor surface that is periodically corrugated with V-shaped grooves. A one-dimensional array of V-grooves is fabricated on a highly-doped silicon surface, using anisotropic wet-etching of crystalline silicon, thereby forming a plasmonic waveguide. Terahertz time domain spectroscopy is used to characterize the propagation of waves near the corrugated surface. We observe that the grating structure creates resonant modes that are confined near the surface. The degree of confinement and frequency of the resonant mode is found to be related to the pitch and depth of the V-grooves. The surface modes are confirmed through both numerical simulations and experimental measurements. Not only does the V-groove geometry represent a new and largely unexplored structure for supporting surface waves, but it also enables the practical fabrication of terahertz waveguides directly on semiconductor surfaces, without relying on reactive-ion etching or electroplating of sub-millimeter metallic surfaces.


Subject(s)
Refractometry/instrumentation , Semiconductors , Surface Plasmon Resonance/instrumentation , Terahertz Spectroscopy/methods , Equipment Design , Equipment Failure Analysis , Terahertz Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...