Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 38: 150-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26702979

ABSTRACT

The current study evaluates the cytogenetic effects of chromium (III) oxide nanoparticles on the root cells of Allium cepa. The root tip cells of A. cepa were treated with the aqueous dispersions of Cr2O3 nanoparticles (NPs) at five different concentrations (0.01, 0.1, 1, 10, and 100µg/mL) for 4hr. The colloidal stability of the nanoparticle suspensions during the exposure period were ascertained by particle size analyses. After 4hr exposure to Cr2O3 NPs, a significant decrease in mitotic index (MI) from 35.56% (Control) to 35.26% (0.01µg/mL), 34.64% (0.1µg/mL), 32.73% (1µg/mL), 29.6% (10µg/mL) and 20.92% (100µg/mL) was noted. The optical, fluorescence and confocal laser scanning microscopic analyses demonstrated specific chromosomal aberrations such as-chromosome stickiness, chromosome breaks, laggard chromosome, clumped chromosome, multipolar phases, nuclear notch, and nuclear bud at different exposure concentrations. The concentration-dependent internalization/bio-uptake of Cr2O3 NPs may have contributed to the enhanced production of anti oxidant enzyme, superoxide dismutase to counteract the oxidative stress, which in turn resulted in observed chromosomal aberrations and cytogenetic effects. These results suggest that A. cepa root tip assay can be successfully applied for evaluating environmental risk of Cr2O3 NPs over a wide range of concentrations.


Subject(s)
Chromium/chemistry , Chromium/toxicity , Nanoparticles/chemistry , Onions/chemistry , Onions/drug effects , Plant Roots/cytology , Plant Roots/drug effects , Chromosome Aberrations , Chromosomes, Plant/drug effects , Chromosomes, Plant/genetics , Oxidative Stress/drug effects , Oxidative Stress/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...