Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 38(10)2019 05 15.
Article in English | MEDLINE | ID: mdl-30979777

ABSTRACT

The multifunctional influenza virus protein PB1-F2 plays several roles in deregulation of host innate immune responses and is a known immunopathology enhancer of the 1918 influenza pandemic. Here, we show that the 1918 PB1-F2 protein not only interferes with the mitochondria-dependent pathway of type I interferon (IFN) signaling, but also acquired a novel IFN antagonist function by targeting the DEAD-box helicase DDX3, a key downstream mediator in antiviral interferon signaling, toward proteasome-dependent degradation. Interactome analysis revealed that 1918 PB1-F2, but not PR8 PB1-F2, binds to DDX3 and causes its co-degradation. Consistent with intrinsic protein instability as basis for this gain-of-function, internal structural disorder is associated with the unique cytotoxic sequences of the 1918 PB1-F2 protein. Infusing mice with recombinant DDX3 protein completely rescued them from lethal infection with the 1918 PB1-F2-producing virus. Alongside NS1 protein, 1918 PB1-F2 therefore constitutes a potent IFN antagonist causative for the severe pathogenicity of the 1918 influenza strain. Our identification of molecular determinants of pathogenesis should be useful for the future design of new antiviral strategies against influenza pandemics.


Subject(s)
DEAD-box RNA Helicases/metabolism , Influenza, Human/virology , Interferons/metabolism , Orthomyxoviridae/pathogenicity , Viral Proteins/physiology , A549 Cells , Animals , Dogs , Female , HEK293 Cells , History, 20th Century , Humans , Influenza, Human/epidemiology , Influenza, Human/history , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae/metabolism , Pandemics , Proteolysis , Signal Transduction , U937 Cells , Viral Proteins/metabolism , Virulence/physiology
2.
Nat Commun ; 9(1): 3284, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30115930

ABSTRACT

Cytokines are involved in early host defense against pathogen infections. In particular, tumor necrosis factor (TNF) and interferon-gamma (IFN-γ) have critical functions in non-cytopathic elimination of hepatitis B virus (HBV) in hepatocytes. However, the molecular mechanisms and mediator molecules are largely unknown. Here we show that interleukin-32 (IL-32) is induced by TNF and IFN-γ in hepatocytes, and inhibits the replication of HBV by acting intracellularly to suppress HBV transcription and replication. The gamma isoform of IL-32 (IL-32γ) inhibits viral enhancer activities by downregulating liver-enriched transcription factors. Our data are validated in both an in vivo HBV mouse model and primary human hepatocytes. This study thus suggests that IL-32γ functions as intracellular effector in hepatocytes for suppressing HBV replication to implicate a possible mechanism of non-cytopathic viral clearance.


Subject(s)
Antiviral Agents/metabolism , Cytokines/metabolism , Hepatitis B virus/physiology , Interleukins/metabolism , Intracellular Space/metabolism , Animals , Base Sequence , Cell Line, Tumor , Disease Models, Animal , Down-Regulation , Enhancer Elements, Genetic/genetics , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/pathology , Hepatocyte Nuclear Factors/metabolism , Humans , MAP Kinase Signaling System , Male , Mice , Models, Biological , Protein Binding , Transcription, Genetic , Virus Replication
3.
J Virol ; 92(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-29875248

ABSTRACT

Hepatitis B virus (HBV) infection is a leading cause of liver diseases; however, the host factors which facilitate the replication and persistence of HBV are largely unidentified. Cellular FLICE inhibitory protein (c-FLIP) is a typical antiapoptotic protein. In many cases of liver diseases, the expression level of c-FLIP is altered, which affects the fate of hepatocytes. We previously found that c-FLIP and its cleaved form interact with HBV X protein (HBx), which is essential for HBV replication, and regulate diverse cellular signals. In this study, we investigated the role of endogenous c-FLIP in HBV replication and its underlying mechanisms. The knockdown of endogenous c-FLIP revealed that this protein regulates HBV replication through two different mechanisms. (i) c-FLIP interacts with HBx and protects it from ubiquitin-dependent degradation. The N-terminal DED1 domain of c-FLIP is required for HBx stabilization. (ii) c-FLIP regulates the expression or stability of hepatocyte nuclear factors (HNFs), which have critical roles in HBV transcription and maintenance of hepatocytes. c-FLIP regulates the stability of HNFs through physical interactions. We verified our findings in three HBV infection systems: HepG2-NTCP cells, differentiated HepaRG cells, and primary human hepatocytes. In conclusion, our results identify c-FLIP as an essential factor in HBV replication. c-FLIP regulates viral replication through its multiple effects on viral and host proteins that have critical roles in HBV replication.IMPORTANCE Although the chronic hepatitis B virus (HBV) infection still poses a major health concern, the host factors which are required for the replication of HBV are largely uncharacterized. Our studies identify cellular FLICE inhibitory protein (c-FLIP) as an essential factor in HBV replication. We found the dual roles of c-FLIP in regulation of HBV replication: c-FLIP interacts with HBx and enhances its stability and regulates the expression or stability of hepatocyte nuclear factors which are essential for transcription of HBV genome. Our findings may provide a new target for intervention in persistent HBV infection.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Hepatitis B virus/physiology , Host-Pathogen Interactions , Trans-Activators/metabolism , Virus Replication , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Gene Knockdown Techniques , Hepatocytes/virology , Humans , Viral Regulatory and Accessory Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...