Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 104(5): 957-967, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31006512

ABSTRACT

Replicating the human genome efficiently and accurately is a daunting challenge involving the duplication of upward of three billion base pairs. At the core of the complex machinery that achieves this task are three members of the B family of DNA polymerases: DNA polymerases α, δ, and ε. Collectively these multimeric polymerases ensure DNA replication proceeds at optimal rates approaching 2 × 103 nucleotides/min with an error rate of less than one per million nucleotides polymerized. The majority of DNA replication of undamaged DNA is conducted by DNA polymerases δ and ε. The DNA polymerase α-primase complex performs limited synthesis to initiate the replication process, along with Okazaki-fragment synthesis on the discontinuous lagging strand. An increasing number of human disorders caused by defects in different components of the DNA-replication apparatus have been described to date. These are clinically diverse and involve a wide range of features, including variable combinations of growth delay, immunodeficiency, endocrine insufficiencies, lipodystrophy, and cancer predisposition. Here, by using various complementary approaches, including classical linkage analysis, targeted next-generation sequencing, and whole-exome sequencing, we describe distinct missense and splice-impacting mutations in POLA1 in five unrelated families presenting with an X-linked syndrome involving intellectual disability, proportionate short stature, microcephaly, and hypogonadism. POLA1 encodes the p180 catalytic subunit of DNA polymerase α-primase. A range of replicative impairments could be demonstrated in lymphoblastoid cell lines derived from affected individuals. Our findings describe the presentation of pathogenic mutations in a catalytic component of a B family DNA polymerase member, DNA polymerase α.


Subject(s)
DNA Polymerase I/genetics , DNA Primase/genetics , Genetic Diseases, X-Linked/etiology , Growth Disorders/etiology , Hypogonadism/etiology , Intellectual Disability/etiology , Microcephaly/etiology , Mutation , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Diseases, X-Linked/pathology , Genotype , Growth Disorders/pathology , Humans , Hypogonadism/pathology , Infant , Intellectual Disability/pathology , Male , Microcephaly/pathology , Middle Aged , Pedigree , Exome Sequencing
3.
Ann Neurol ; 68(2): 259-63, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20695019

ABSTRACT

Peroxisomal biogenesis disorders typically cause severe multisystem disease and early death. We describe a child and an adult of normal intelligence with progressive ataxia, axonal motor neuropathy, and decreased vibration sense. Both patients had marked cerebellar atrophy. Peroxisomal studies revealed a peroxisomal biogenesis disorder. Two mutations in PEX10 were found in the child, c.992G>A (novel) and c.764_765insA, and in the adult, c.2T>C (novel) and c.790C>T. Transfection with wild-type PEX10 corrected the fibroblast phenotype. Bile acid supplements and dietary restriction of phytanic acid were started. Peroxisomal biogenesis disorders should be considered in the differential diagnosis of autosomal recessive ataxia.


Subject(s)
Chromosome Disorders/genetics , Genes, Recessive/genetics , Genetic Predisposition to Disease/genetics , Mutation/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Spinocerebellar Degenerations/genetics , Cells, Cultured , Child , Chromosome Disorders/diagnosis , Chromosome Disorders/diet therapy , Humans , Male , Mosaicism , Peroxins , Spinocerebellar Degenerations/diagnosis , Spinocerebellar Degenerations/diet therapy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...