Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2084-2087, 2022 07.
Article in English | MEDLINE | ID: mdl-36086174

ABSTRACT

The number of studies in the medical field that uses machine learning and deep learning techniques has been increasing in the last years. However, these techniques require a huge amount of data that can be difficult and expensive to obtain. This specially happens with cardiac magnetic resonance (MR) images. One solution to the problem is raise the dataset size by generating synthetic data. Convolutional Variational Autoencoder (CVAe) is a deep learning technique which allows to generate synthetic images, but sometimes the synthetic images can be slightly blurred. We propose the combination of the CVAe technique combined with Style Transfer technique to generate synthetic realistic cardiac MR images. Clinical Relevance-The current work presents a tool to increase in a simple easy and fast way the cardiac magnetic resonance images dataset with which perform machine learning and deep learning studies.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Heart/diagnostic imaging , Machine Learning
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1436-1439, 2022 07.
Article in English | MEDLINE | ID: mdl-36086478

ABSTRACT

Prostate cancer is one of the most common cancers in men, with symptoms that may be confused with those caused by benign prostatic hyperplasia. One of the key aspects of treating prostate cancer is its early detection, increasing life expectancy and improving the quality of life of those patients. However, the tests performed are often invasive, resulting in a biopsy. A non-invasive alternative is the magnetic resonance imaging (MRI)-based PI-RADS v2 classification. The aim of this work was to find objective biomarkers that allow the PI-RADS classification of prostate lesions using a radiomics approach on Multiparametric MRI. A total of 90 subjects were analyzed. From each segmented lesion, 609 different texture features were extracted using five different statistical methods. Two feature selection methods and eight multiclass predictive models were evaluated. This was a multiclass study in which the best AUC result was 0.7442 ± 0.0880, achieved with the Naïve Bayes model using a subset of 120 features. Valuable results were also obtained using the Random Forests model, obtaining an AUC of 0.7394 ± 0.0965 with a lower number of features (52). Clinical Relevance- The current study establishes a methodology for classifying prostate cancer and supporting clinical decision-making in a fast and efficient manner and avoiding additional invasive procedures using MRI.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Bayes Theorem , Humans , Magnetic Resonance Imaging/methods , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...