Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 35(10): e4779, 2022 10.
Article in English | MEDLINE | ID: mdl-35642280

ABSTRACT

Phosphorus (31 P-) MRS in vivo enables detection and quantification of important phosphorus-containing metabolites in biological tissues. 31 P-MRS of the normal spleen is challenging due to the relatively small volume and the larger distance between the spleen and surface coil. However, reference spectra of the healthy spleen are invaluable in studies of splenic malignancies and benign causes of splenomegaly, as well as in the study of its physiology. The purpose of this work was to investigate the feasibility of localized 31 P-MRS of healthy spleen in situ in a clinically acceptable measurement time using a clinical 3 T MR scanner. In this work, 31 P spectra of five healthy volunteers were measured using single-voxel image-selected in vivo spectroscopy (ISIS). The measurement sequence was augmented by broadband proton decoupling and nuclear Overhauser effect enhancement. It is demonstrated that localized 31 P-MRS of the spleen in situ using single-voxel ISIS is feasible on a clinical 3 T scanner in a clinically acceptable acquisition time. However, results have to be corrected for the transmitter excitation profile, and chemical shift displacement errors need to be taken into consideration during placement of the volume of interest. Results presented here could be used as a reference in future studies of splenomegaly caused by haematological malignancies.


Subject(s)
Phosphorus , Spleen , Humans , Magnetic Resonance Spectroscopy/methods , Protons , Spleen/diagnostic imaging , Splenomegaly
2.
Br J Radiol ; 89(1062): 20160108, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27033180

ABSTRACT

OBJECTIVE: The purpose of this work was to assess heating and radiofrequency (RF) deposition and image quality effects of a prototype three-section carbon fibre flatbed insert for use in MRI. METHODS: RF deposition was assessed using two different thermometry techniques, infrared thermometry and Bragg-grating thermometry. Image quality effects were assessed with and without the flatbed insert in place by using mineral oil phantoms and a human subject. RESULTS: Neither technique detected heating of the insert in typical MRI examinations. We found that the insert was less suitable for MRI applications owing to severe RF shielding artefact. For spin-echo (SE), turbo spin-echo (TSE) and gradient-echo sequences, the reduction in signal-to-noise ratio (SNR) was as much as 89% when the insert was in place compared with the standard couch, making it less suitable as a patient-support material. Turning on the MultiTransmit switch together with using the scanner's quadrature body coil improved the reduction in SNR from 89% to 39% for the SE sequence and from 82% to 12% for the TSE sequence. CONCLUSION: No evidence was found to support reports in the literature that carbon fibre is an unsuitable material for use in MRI because of heating. ADVANCES IN KNOWLEDGE: This study suggests that carbon fibre is less suitable for large-scale MRI applications owing to it causing severe RF shading. Further research is needed to establish the suitability of the flatbed for treatment planning using alternative sequences or whether an alternative carbon fibre composite for large-scale MRI applications or a design that can minimize shielding can be found.


Subject(s)
Beds , Carbon , Hot Temperature , Magnetic Resonance Imaging/instrumentation , Patient Positioning/instrumentation , Radiotherapy Planning, Computer-Assisted/instrumentation , Carbon Fiber , Equipment Design , Equipment Failure Analysis , Materials Testing , Radiotherapy, Image-Guided/instrumentation
3.
World J Radiol ; 8(1): 21-49, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26834942

ABSTRACT

There is considerable disparity in the published apparent diffusion coefficient (ADC) values across different anatomies. Institutions are increasingly assessing repeatability and reproducibility of the derived ADC to determine its variation, which could potentially be used as an indicator in determining tumour aggressiveness or assessing tumour response. In this manuscript, a review of selected articles published to date in healthy extra-cranial body diffusion-weighted magnetic resonance imaging is presented, detailing reported ADC values and discussing their variation across different studies. In total 115 studies were selected including 28 for liver parenchyma, 15 for kidney (renal parenchyma), 14 for spleen, 13 for pancreatic body, 6 for gallbladder, 13 for prostate, 13 for uterus (endometrium, myometrium, cervix) and 13 for fibroglandular breast tissue. Median ADC values in selected studies were found to be 1.28 × 10(-3) mm(2)/s in liver, 1.94 × 10(-3) mm(2)/s in kidney, 1.60 × 10(-3) mm(2)/s in pancreatic body, 0.85 × 10(-3) mm(2)/s in spleen, 2.73 × 10(-3) mm(2)/s in gallbladder, 1.64 × 10(-3) mm(2)/s and 1.31 × 10(-3) mm(2)/s in prostate peripheral zone and central gland respectively (combined median value of 1.54×10(-3) mm(2)/s), 1.44 × 10(-3) mm(2)/s in endometrium, 1.53 × 10(-3) mm(2)/s in myometrium, 1.71 × 10(-3) mm(2)/s in cervix and 1.92 × 10(-3) mm(2)/s in breast. In addition, six phantom studies and thirteen in vivo studies were summarized to compare repeatability and reproducibility of the measured ADC. All selected phantom studies demonstrated lower intra-scanner and inter-scanner variation compared to in vivo studies. Based on the findings of this manuscript, it is recommended that protocols need to be optimised for the body part studied and that system-induced variability must be established using a standardized phantom in any clinical study. Reproducibility of the measured ADC must also be assessed in a volunteer population, as variations are far more significant in vivo compared with phantom studies.

4.
NMR Biomed ; 27(4): 459-67, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24519849

ABSTRACT

Back-to-back (1)H MRSI scans, using an endorectal and phased-array coil combination, were performed on 18 low-risk patients with prostate cancer at 3 T, employing TEs of 32 and 100 ms in order to compare metabolite visualization at each TE. Outer-volume suppression of lipid signals was performed using regional saturation (REST) slabs and the quantification of spectra at both TEs was achieved with the quantitation using quantum estimation (QUEST) routine. Metabolite nulling experiments in an additional five patients found that there were negligible macromolecule background signals in prostate spectra at TE = 32 ms. Metabolite visibility was judged using the criterion Cramér-Rao lower bound (CRLB)/amplitude < 20%, and metabolite concentrations were corrected for relaxation effects and referenced to the data acquired in corresponding water-unsuppressed MRSI scans. For the first time, the prostate metabolites spermine and myo-inositol were quantified individually in vivo, together with citrate, choline and creatine. All five metabolite visibilities were higher in TE = 32 ms MRSI than in TE = 100 ms MRSI. At TE = 32 ms, citrate was visible in 99.0% of lipid-free spectra, whereas, at TE = 100 ms, no metabolite simulation of citrate matched the in vivo peaks. Spermine, choline and creatine were visualised separately in 30.4% more spectra at TE = 32 ms than at TE = 100 ms, and myo-inositol in 72.5% more spectra. T2 values were calculated for spermine (53 ± 16 ms), choline (62 ± 17 ms) and myo-inositol (90 ± 48 ms). Data from the TE = 32 ms spectra showed that the concentrations of citrate and spermine secretions were positively correlated in both the peripheral zone and central gland (R(2) = 0.73 and R(2) = 0.43, respectively), and that the citrate content was significantly higher in the former at 64 ± 22 mm than in the latter at 32 ± 16 mm (p = 0.01). However, lipid contamination at TE = 32 ms was substantial; therefore, to make clinical use of the greater visualisation of prostate metabolites at TE = 32 ms rather than at TE = 100 ms, three-dimensional MRSI at TE = 32 ms with effective lipid suppression must be implemented.


Subject(s)
Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Metabolome , Metabolomics/methods , Prostate/metabolism , Protons , Aged , Citrates/metabolism , Humans , Lipids/analysis , Male , Middle Aged , Spermine/metabolism , Time Factors
5.
Eur J Radiol Open ; 1: 22-27, 2014.
Article in English | MEDLINE | ID: mdl-26779560

ABSTRACT

BACKGROUND: Diffusion-weighted (DW)-MRI is invaluable in detecting prostate cancer. We determined its sensitivity and specificity and established interobserver agreement for detecting tumour in men with a family history of prostate cancer stratified by genetic risk. METHODS: 51 men with a family history of prostate cancer underwent T2-W + DW-endorectal MRI at 3.0 T. Presence of tumour was noted at right and left apex, mid and basal prostate sextants by 2 independent observers, 1 experienced and the other inexperienced in endorectal MRI. Sensitivity and specificity against a 10-core sampling technique (lateral and medial cores at each level considered together) in men with >2× population risk based on 71 SNP analysis versus those with lower genetic risk scores was established. Interobserver agreement was determined at a subject level. RESULTS: Biopsies indicated cancer in 28 sextants in 13/51 men; 32 of 51 men had twice the population risk (>0.25) based on 71 SNP profiling. Sensitivity/specificity per-subject for patients was 90.0%/86.4% (high-risk) vs. 66.7%/100% (low-risk, observer 1) and 60.0%/86.3% (high-risk) vs. 33.3%/93.8% (low-risk, observer 2) with moderate overall inter-observer agreement (kappa = 0.42). Regional sensitivities/specificities for high-risk vs. low-risk for observer 1 apex 72.2%/100% [33.3%/100%], mid 100%/93.1% [100%/97.3%], base 16.7%/98.3% [0%/100%] and for observer 2 apex 36.4%/98.1% [0%/100%], mid 28.6%/96.5% [100%/100%], base 20%/100% [0%/97.3%] were poorer as they failed to detect multiple lesions. CONCLUSION: Endorectal T2W + DW-MRI at 3.0 T yields high sensitivity and specificity for tumour detection by an experienced observer in screening men with a family history of prostate cancer and increased genetic risk.

6.
PLoS One ; 8(9): e71996, 2013.
Article in English | MEDLINE | ID: mdl-24023724

ABSTRACT

Real-time detection of the rates of metabolic flux, or exchange rates of endogenous enzymatic reactions, is now feasible in biological systems using Dynamic Nuclear Polarization Magnetic Resonance. Derivation of reaction rate kinetics from this technique typically requires multi-compartmental modeling of dynamic data, and results are therefore model-dependent and prone to misinterpretation. We present a model-free formulism based on the ratio of total areas under the curve (AUC) of the injected and product metabolite, for example pyruvate and lactate. A theoretical framework to support this novel analysis approach is described, and demonstrates that the AUC ratio is proportional to the forward rate constant k. We show that the model-free approach strongly correlates with k for whole cell in vitro experiments across a range of cancer cell lines, and detects response in cells treated with the pan-class I PI3K inhibitor GDC-0941 with comparable or greater sensitivity. The same result is seen in vivo with tumor xenograft-bearing mice, in control tumors and following drug treatment with dichloroacetate. An important finding is that the area under the curve is independent of both the input function and of any other metabolic pathways arising from the injected metabolite. This model-free approach provides a robust and clinically relevant alternative to kinetic model-based rate measurements in the clinical translation of hyperpolarized (13)C metabolic imaging in humans, where measurement of the input function can be problematic.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Animals , Cell Line, Tumor , Humans , Indazoles , Kinetics , Lactic Acid/chemistry , Metabolic Networks and Pathways/drug effects , Mice , Models, Theoretical , Pyruvates/chemistry , Sulfonamides , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...