Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 379(6637): 1140-1149, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36927019

ABSTRACT

Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation of pre-messenger RNAs (pre-mRNAs) encoding stathmin-2 (also known as SCG10), a protein that is required for axonal regeneration. We found that TDP-43 binding to a GU-rich region sterically blocked recognition of the cryptic 3' splice site in STMN2 pre-mRNA. Targeting dCasRx or antisense oligonucleotides (ASOs) suppressed cryptic splicing, which restored axonal regeneration and stathmin-2-dependent lysosome trafficking in TDP-43-deficient human motor neurons. In mice that were gene-edited to contain human STMN2 cryptic splice-polyadenylation sequences, ASO injection into cerebral spinal fluid successfully corrected Stmn2 pre-mRNA misprocessing and restored stathmin-2 expression levels independently of TDP-43 binding.


Subject(s)
DNA-Binding Proteins , Gene Editing , Polyadenylation , RNA Splicing , Stathmin , TDP-43 Proteinopathies , Animals , Humans , Mice , DNA-Binding Proteins/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Stathmin/genetics , Stathmin/metabolism , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/therapy , RNA Splice Sites , Oligonucleotides, Antisense/genetics , Neuronal Outgrowth
SELECTION OF CITATIONS
SEARCH DETAIL
...