Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 41: 67-73, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29519321

ABSTRACT

BACKGROUND: Use of pharmaceutical agent for breast cancer chemotherapy is an interesting method that induces cells death by different way, such as apoptosis. Parthenolide is the main compound in feverfew that has been used to cure migraine and rheumatoid arthritis for long time. Parthenolide has been predominately investigated as inducer of apoptosis in human cancer cells. PURPOSE: We examined the expression of vimentin and Elongation factor α - 1 as breast cancer biomarkers in MCF7 cells exposure to Parthenolide. METHOD: In this study, we investigated the antitumor mechanism of Parthenolide on the human breast cancer cell line MCF7, using SEM, flow cytometry and proteomics techniques. RESULT: Comparative proteome analyses are shown Elongation factor1-α and vimentin was suppressed in response to Parthenolide treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Peptide Elongation Factor 1/metabolism , Sesquiterpenes/pharmacology , Breast Neoplasms/pathology , Cell Death/drug effects , Female , Humans , MCF-7 Cells , Peptide Elongation Factor 1/antagonists & inhibitors , Tanacetum parthenium/chemistry , Vimentin/antagonists & inhibitors , Vimentin/metabolism
2.
Cytotechnology ; 69(4): 551-563, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28397098

ABSTRACT

This study investigated the potential of Persian shallot extract as an anticancer agent in HepG2 tumor cell line, an in vitro human hepatoma cancer model system. The inhibitory effect of Persian shallot on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of Persian shallot, the activity of Persian shallot in inducing apoptosis was investigated through the detection of annexin V signal by flow cytometry and expression of some apoptosis related genes such p21, p53, puma, caspase-8 family-Bcl-2 proteins like bid, bim, bcl-2 and bax were measured by real-time PCR in HepG2 cells. Persian shallot extract inhibited the growth of HepG2 cells in a dose-dependent manner. The IC50 value (inhibiting cell growth by 50%) was 149 µg/ml. The results of real-time PCR revealed a significant up-regulation of bid, bim, caspase-8, puma, p53, p21 and bax genes and a significant downregulation of bcl-2 gene in HepG2 cells treated with Persian shallot extract significantly. Therefore, this is the first report on an increased expression of bid, bim, caspase-8, puma, p53, p21 and bax genes and down regulation of bcl-2 gene indicating that the Persian shallot extract possibly induced the process of cell death through the intrinsic and extrinsic apoptosis pathways and triggers the programmed cell death in HepG2 tumor cell lines by modulating the expression of pro-/anti-apoptotic genes. Furthermore, we showed that Persian shallot extract increased annexin V signal and expression, resulting in apoptotic cell death of HepG2 cells after 24 h treatment. Therefore, according to the results of this study, the Persian shallot extract could be considered as a potential candidate for production of drug for the prevention or treatment of human hepatoma.

3.
Biomed Res Int ; 2014: 182945, 2014.
Article in English | MEDLINE | ID: mdl-25202705

ABSTRACT

Staphylococcus aureus is a Gram-positive bacterium that causes many harmful and life-threatening diseases. Some strains of this bacterium are resistant to available antibiotics. This study was designed to evaluate the ability of indigenous actinomycetes to produce antibacterial compounds against S. aureus and characterize the structure of the resultant antibacterial compounds. Therefore, a slightly modified agar well diffusion method was used to determine the antibacterial activity of actinomycete isolates against the test microorganisms. The bacterial extracts with antibacterial activity were fractionated by silica gel and G-25 sephadex column chromatography. Also, the active fractions were analyzed by thin layer chromatography. Finally, the partial structure of the resultant antibacterial compound was characterized by Fourier transform infrared spectroscopy. One of the isolates, which had a broad spectrum and high antibacterial activity, was designated as Pseudonocardia sp. JB05, based on the results of biochemical and 16S rDNA gene sequence analysis. Minimum inhibitory concentration for this bacterium was 40 AU mL(-1) against S. aureus. The antibacterial activity of this bacterium was stable after autoclaving, 10% SDS, boiling, and proteinase K. Thin layer chromatography, using anthrone reagent, showed the presence of carbohydrates in the purified antibacterial compound. Finally, FT-IR spectrum of the active compound illustrated hydroxyl groups, hydrocarbon skeleton, and double bond of polygenic compounds in its structure. To the best of our knowledge, this is the first report describing the efficient antibacterial activity by a local strain of Pseudonocardia. The results presented in this work, although at the initial stage in bioactive product characterization, will possibly contribute toward the Pseudonocardia scale-up for the production and identification of the antibacterial compounds.


Subject(s)
Actinobacteria/chemistry , Anti-Bacterial Agents/pharmacology , Salinity , Soil Microbiology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/isolation & purification , DNA, Ribosomal/genetics , Endopeptidase K/metabolism , Microbial Sensitivity Tests , Molecular Sequence Data , Phylogeny , Soil , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...