Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 10: 955486, 2022.
Article in English | MEDLINE | ID: mdl-36313570

ABSTRACT

Downregulated expression of anti-tumor miR-383 has been found in many kinds of cancer. MiR-383 family members can directly target the 3'-untranslated region (3'-UTR) of the mRNA of some pro-tumor genes to attenuate several cancer-related processes, including cell proliferation, invasion, migration, angiogenesis, immunosuppression, epithelial-mesenchymal transition, glycolysis, chemoresistance, and the development of cancer stem cells, whilst promoting apoptosis. Functionally, miR-383 operates as a tumor inhibitor miRNA in many types of cancer, including breast cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, colorectal cancer, esophageal cancer, lung cancer, head and neck cancer, glioma, medulloblastoma, melanoma, prostate cancer, cervical cancer, oral squamous cell carcinoma, thyroid cancer, and B-cell lymphoma. Both pro-tumor and anti-tumor effects have been attributed to miR-383 in ovarian cancer. However, only the pro-tumor effects of miR-383 were reported in cholangiocarcinoma. The restoration of miR-383 expression could be considered a possible treatment for cancer. This review discusses the anti-tumor effects of miR-383 in human cancers, emphasizing their downstream target genes and potential treatment approaches.

2.
Mol Ther Nucleic Acids ; 29: 219-242, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35782361

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.

3.
Andrologia ; 54(9): e14497, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35700742

ABSTRACT

The inadequate efficacy of the current treatments for metastatic prostate cancer has directed efforts to the discovery of novel therapies. MicroRNAs (miRNAs) have been considered potential therapeutic agents due to their ability to control gene expression and cellular pathways. The accurate identification of genes and pathways which are targeted by a miRNA is the first step in the therapeutic use of these molecules. In this regard, there are multiple experimental and computational methods to predict and confirm the miRNA-mRNA relationships. The targeting the androgen receptor (AR) indirectly as the most important mediator of prostate cancer has been posited to both control the disease and prevent resistance to treatment. This study aimed to identify miRNAs targeting AR coregulators. For this purpose, we examined target genes by combining miRNA-mRNA computational and experimental data from various databases. miR-27a-3p and miR-124 displayed the highest scores and were selected as miRNAs with the potential to target candidate genes. Next, three cell lines of prostate cancer including PC3, LNCAP, and DU145 were transfected with plasmids which were expressed these selected miRNAs. Then, the gene expression and cell cycle analysis were performed. A decrease was observed in cell viability in all three cell lines than the cells transfected with backbone plasmid. Furthermore, the findings indicated that miR-27a-3p and miR-124 led to a significant decrease in the expression of all genes that were studied in PC3 cell line. In addition, miR-124 caused significant the cellular arrest in the G0/G1 stage, while for miR-27a-3p, this arrest occurred was in the G2/M stage. Our results indicated that the function of a unique miRNA could be different in different cell lines with particular cancer phenotype based on the cell line stage. These findings offer the possibility of employing the miR-124 and miR-27a-3p as therapeutic agents for prostate cancer treatment.


Subject(s)
MicroRNAs , Prostatic Neoplasms , Cell Line, Tumor , Computational Biology , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Messenger , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
4.
Cancer Lett ; 459: 112-121, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31181319

ABSTRACT

Alternative polyadenylation (APA) is now widely recognized to regulate gene expression. APA is an RNA-processing mechanism that generates distinct 3' termini on mRNAs, producing mRNA isoforms. Different factors influence the initiation and development of this process. CFIm25 (among others) is a cleavage and polyadenylation factor that plays a key role in the regulation of APA. Shortening of the 3'UTRs on mRNAs leads to enhanced cellular proliferation and tumorigenicity. One reason may be the up-regulation of growth promoting factors, such as Cyclin D1. Different studies have reported a dual role of CFIm25 in cancer (both oncogenic and tumor suppressor). microRNAs (miRNAs) may be involved in CFIm25 function as well as competing endogenous RNAs (ceRNAs). The present review focuses on the role of CFIm25 in cancer, cancer treatment, and possible involvement in other human diseases. We highlight the involvement of miRNAs and ceRNAs in the function of CFIm25 to affect gene expression. The lack of understanding of the mechanisms and regulation of CFIm25 and APA has underscored the need for further research regarding their role in cancer and other diseases.


Subject(s)
Cleavage And Polyadenylation Specificity Factor/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Animals , Cell Line, Tumor , Cleavage And Polyadenylation Specificity Factor/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/pathology , Polyadenylation
5.
J Cell Biochem ; 120(9): 14233-14246, 2019 09.
Article in English | MEDLINE | ID: mdl-31081139

ABSTRACT

A variety of epigenetic factors involved in leukemia pathogenesis. Among various epigenetic factors, microRNAs (miRNAs) have emerged as important players, which affect a sequence of cellular and molecular signaling pathways. Leukemia is known as progressive cancer, which is related to many health problems in the world. It has been shown that the destruction of the blood-forming organs could lead to abnormal effects on the proliferation and development of leukocytes and their precursors. Despite many attempts for approved effective and powerful therapies for patients with leukemia, finding and developing new therapeutic approaches are required. One of the important aspects of leukemia therapy, identification of underlying cellular and molecular mechanisms involved in the pathogenesis of leukemia. Several miRNAs (ie, miR-103, miR-101, mit-7, let-7i, miR-424, miR-27a, and miR-29c) and play major roles in response to therapy in patients with leukemia. miRNAs exert their effects by targeting a variety of targets, which are associated with response to therapy in patients with leukemia. It seems that more understanding about the roles of miRNAs in response to therapy in patients with leukemia could contribute to better treatment of patients with leukemia. Here, for the first time, we summarized various miRNAs, which are involved in response to therapy in the treatment patients with leukemia.


Subject(s)
Antineoplastic Agents/therapeutic use , Gene Expression Profiling/methods , Gene Expression Regulation, Leukemic/drug effects , Leukemia/drug therapy , Leukemia/genetics , MicroRNAs/genetics , Genetic Predisposition to Disease/genetics , Humans , Leukemia/diagnosis , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Prognosis , Signal Transduction/drug effects , Signal Transduction/genetics
6.
J Cell Physiol ; 234(6): 8465-8486, 2019 06.
Article in English | MEDLINE | ID: mdl-30515779

ABSTRACT

Leukemia is known as a progressive malignant disease, which destroys the blood-forming organs and results in adverse effects on the proliferation and development of leukocytes and their precursors in the blood and bone marrow. There are four main classes of leukemia including acute leukemia, chronic leukemia, myelogenous leukemia, and lymphocytic leukemia. Given that a variety of internal and external factors could be associated with the initiation and progression of different types of leukemia. One of the important factors is epigenetic regulators such as microRNAs (miRNAs) and long noncoding RNAs (ncRNA). MiRNAs are short ncRNAs which act as tumor suppressor (i.e., miR-15, miR-16, let-7, and miR-127) or oncogene (i.e., miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223) in leukemia. It has been shown that deregulation of these molecules are associated with the initiation and progression of leukemia. Hence, miRNAs could be used as potential therapeutic candidates in the treatment of patients with leukemia. Moreover, increasing evidence revealed that miRNAs could be used as diagnostic and prognostic biomarkers in monitoring patients in early stages of disease or after received chemotherapy regimen. It seems that identification and development of new miRNAs could pave to the way to the development new therapeutic platforms for patients with leukemia. Here, we summarized various miRNAs as tumor suppressor and oncogene which could be introduced as therapeutic targets in treatment of leukemia.


Subject(s)
Genes, Tumor Suppressor , Leukemia/genetics , MicroRNAs/genetics , Oncogenes/genetics , Epigenesis, Genetic/genetics , Humans , Leukemia/pathology , Leukemia/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...