Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36904508

ABSTRACT

In this work, silver (Ag) anchored over graphene (GN) wrapped polypyrrole (PPy)@ nickel hydroxide (Ni(OH)2) nanocomposites were synthesized through a combination of oxidative polymerization and hydrothermal processes. The synthesized Ag/GN@PPy-Ni(OH)2 nanocomposites were characterized for their morphological characteristics by field emission scanning electron microscopy (FESEM), while the structural investigations were done by X-ray diffraction and X-ray photoelectron spectroscopy (XPS). The FESEM studies showed Ni(OH)2 flakes and silver particles attached over the surface of PPy globules, along with the presence of GN sheets and spherical silver particles. The structural analysis also showed the presence of constituents, i.e., Ag, Ni(OH)2, PPy, GN, and their interaction, therefore vouching that the synthesis protocol is efficacious. The electrochemical (EC) investigations were done in potassium hydroxide (1 M KOH) using a three electrode setup. The quaternary Ag/GN@PPy-Ni(OH)2 nanocomposite electrode showed the highest specific capacity of 237.25 C g-1. The highest electrochemical performance of the quaternary nanocomposite is associated with the synergistic/additional effect of PPy, Ni(OH)2, GN, and Ag. The assembled supercapattery with Ag/GN@PPy-Ni(OH)2 as a positive and activated carbon (AC) as a negative electrode displayed eminent energy density of 43.26 Wh kg-1 with the associated power density of 750.00 W kg-1 at a current density of 1.0 A g-1. The cyclic stability of the supercapattery (Ag/GN@PPy-Ni(OH)2//AC), comprising a battery-type electrode, displayed a high cyclic stability of 108.37% after 5500 cycles.

2.
Polymers (Basel) ; 12(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261072

ABSTRACT

In this study, silver (Ag) and cobalt oxide (Co3O4) decorated polyaniline (PANI) fibers were prepared by the combination of in-situ aniline oxidative polymerization and the hydrothermal methodology. The morphology of the prepared Ag/Co3O4@PANI ternary nanocomposite was studied by scanning electron microscopy and transmission electron microscopy, while the structural studies were carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The morphological characterization revealed fibrous shaped PANI, coated with Ag and Co3O4 nanograins, while the structural studies revealed high purity, good crystallinity, and slight interactions among the constituents of the Ag/Co3O4@PANI ternary nanocomposite. The electrochemical performance studies revealed the enhanced performance of the Ag/Co3O4@PANI nanocomposite due to the synergistic/additional effect of Ag, Co3O4 and PANI compared to pure PANI and Co3O4@PANI. The addition of the Ag and Co3O4 provided an extended site for faradaic reactions leading to the high specific capacity. The Ag/Co3O4@PANI ternary nanocomposite exhibited an excellent specific capacity of 262.62 C g-1 at a scan rate of 3 mV s-1. The maximum energy and power density were found to be 14.01 Wh kg-1 and 165.00 W kg-1, respectively. The cyclic stability of supercapattery (Ag/Co3O4@PANI//activated carbon) consisting of a battery type electrode demonstrated a gradual increase in specific capacity with a continuous charge-discharge cycle until ~1000 cycles, then remained stable until 2500 cycles and later started decreasing, thereby showing the cyclic stability of 121.03% of its initial value after 3500 cycles.

3.
Polymers (Basel) ; 12(12)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291451

ABSTRACT

In this study, ternary composites of polyaniline (PANI) with manganese dioxide (MnO2) nanorods and carbon nanotubes (CNTs) were prepared by employing a hydrothermal methodology and in-situ oxidative polymerization of aniline. The morphological analysis by scanning electron microscopy showed that the MnO2 possessed nanorod like structures in its pristine form, while in the ternary PANI@CNT/MnO2 composite, coating of PANI over CNT/MnO2, rods/tubes were evidently seen. The structural analysis by X-ray diffraction and X-ray photoelectron spectroscopy showed peaks corresponding to MnO2, PANI and CNT, which suggested efficacy of the synthesis methodology. The electrochemical performance in contrast to individual components revealed the enhanced performance of PANI@CNT/MnO2 composite due to the synergistic/additional effect of PANI, CNT and MnO2 compared to pure MnO2, PANI and PANI@CNT. The PANI@CNT/MnO2 ternary composite exhibited an excellent specific capacity of 143.26 C g-1 at a scan rate of 3 mV s-1. The cyclic stability of the supercapattery (PANI@CNT/MnO2/activated carbon)-consisting of a battery type electrode-demonstrated a gradual increase in specific capacity with continuous charge-discharge over ~1000 cycles and showed a cyclic stability of 119% compared to its initial value after 3500 cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...