Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-38065169

ABSTRACT

Cavity quantum electrodynamics (QED), the study of the interaction between quantized emitters and photons confined in an optical cavity, is an important tool for quantum science in computing, networking, and synthetic matter. In atomic cavity QED, this approach typically relies upon an ultrahigh vacuum chamber that hosts a cold trapped atomic ensemble and an optical cavity. Upgrading the cavity necessitates a months-long laborious process of removing external optics, venting, replacing the resonator, baking, and replacing optics, constituting a substantial bottleneck to innovation in resonator design. In this work, we demonstrate that the flexibility of optical cavities and the quick turnaround time in switching between them can be restored with the vacuum loadlock technique-reducing the cycle time to install a cavity, bake it, and transport it into the science chamber for days, achieving 3 × 10-10 Torr pressure in the science chamber. By reducing vacuum limitations, this approach is particularly powerful for labs interested in quickly exploring novel optic cavities or any other atomic physics relying on in-vacuum optics.

2.
Opt Express ; 31(1): 528-535, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36606989

ABSTRACT

Light is an excellent medium for both classical and quantum information transmission due to its speed, manipulability, and abundant degrees of freedom into which to encode information. Recently, space-division multiplexing has gained attention as a means to substantially increase the rate of information transfer by utilizing sets of infinite-dimensional propagation eigenmodes such as the Laguerre-Gaussian "donut" modes. Encoding in these high-dimensional spaces necessitates devices capable of manipulating photonic degrees of freedom with high efficiency. In this work, we demonstrate controlling the optical susceptibility of an atomic sample can be used as powerful tool for manipulating the degrees of freedom of light that pass through the sample. Utilizing this tool, we demonstrate photonic mode conversion between two Laguerre-Gaussian modes of a twisted optical cavity with high efficiency. We spatiotemporally modulate the optical susceptibility of an atomic sample that sits at the cavity waist using an auxiliary Stark-shifting beam, in effect creating a mode-coupling optic that converts modes of orbital angular momentum l = 3 → l = 0. The internal conversion efficiency saturates near unity as a function of the atom number and modulation beam intensity, finding application in topological few-body state preparation, quantum communication, and potential development as a flexible tabletop device.

3.
Science ; 366(6466): 745-749, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31699937

ABSTRACT

Atom interferometers are powerful tools for both measurements in fundamental physics and inertial sensing applications. Their performance, however, has been limited by the available interrogation time of freely falling atoms in a gravitational field. By suspending the spatially separated atomic wave packets in a lattice formed by the mode of an optical cavity, we realize an interrogation time of 20 seconds. Our approach allows gravitational potentials to be measured by holding, rather than dropping, atoms. After seconds of hold time, gravitational potential energy differences from as little as micrometers of vertical separation generate megaradians of interferometer phase. This trapped geometry suppresses the phase variance due to vibrations by three to four orders of magnitude, overcoming the dominant noise source in atom-interferometric gravimeters.

4.
Phys Rev Lett ; 121(4): 040402, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30095957

ABSTRACT

We present an atom interferometry technique in which the beam splitter is split into two separate operations. A microwave pulse first creates a spin-state superposition, before optical adiabatic passage spatially separates the arms of that superposition. Despite using a thermal atom sample in a small (600 µm) interferometry beam, this procedure delivers an efficiency of 99% per ℏk of momentum separation. Utilizing this efficiency, we first demonstrate interferometry with up to 16ℏk momentum splitting and free-fall limited interrogation times. We then realize a single-source gradiometer, in which two interferometers measuring a relative phase originate from the same atomic wave function. Finally, we demonstrate a resonant interferometer with over 100 adiabatic passages, and thus over 400ℏk total momentum transferred.

5.
Phys Rev Lett ; 114(10): 100405, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25815912

ABSTRACT

We propose and demonstrate a new scheme for atom interferometry, using light pulses inside an optical cavity as matter wave beam splitters. The cavity provides power enhancement, spatial filtering, and a precise beam geometry, enabling new techniques such as low power beam splitters (<100 µW), large momentum transfer beam splitters with modest power, or new self-aligned interferometer geometries utilizing the transverse modes of the optical cavity. As a first demonstration, we obtain Ramsey-Raman fringes with >75% contrast and measure the acceleration due to gravity, g, to 60 µg/sqrt[Hz] resolution in a Mach-Zehnder geometry. We use >10(7) cesium atoms in the compact mode volume (600 µm 1/e(2) waist) of the cavity and show trapping of atoms in higher transverse modes. This work paves the way toward compact, high sensitivity, multiaxis interferometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...