Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 273(5278): 1085-7, 1996 Aug 23.
Article in English | MEDLINE | ID: mdl-8688090

ABSTRACT

Spectra of the hydrogen Lyman alpha (Ly-alpha) emission line profiles of the jovian dayglow, obtained by the Goddard High Resolution Spectrograph on the Hubble Space Telescope, appear complex and variable on time scales of a few minutes. Dramatic changes occur in the Ly-alpha bulge region at low latitudes, where the line profiles exhibit structures that correspond to supersonic velocities of the order of several to tens of kilometers per second. This behavior, unexpected in a planetary atmosphere, is evidence for the particularly stormy jovian upper atmosphere, not unlike a star's atmosphere.


Subject(s)
Hydrogen , Jupiter , Atmosphere , Extraterrestrial Environment , Spectrum Analysis
2.
Science ; 269(5226): 951-3, 1995 Aug 18.
Article in English | MEDLINE | ID: mdl-17807729

ABSTRACT

Hubble Space Telescope ultraviolet images of Saturn obtained with the Faint Object Camera near 220 nanometers reveal a dark oval encircling the north magnetic pole of the planet. The opacity has an equivalent width of approximately 11 degrees in latitude and is centered around approximately 79 degrees N. The oval shape of the dark structure and its coincidence with the aurora detected by the Voyager Ultraviolet Spectrometer suggest that the aerosol formation is related to the auroral activity.

3.
Science ; 266(5191): 1675-8, 1994 Dec 09.
Article in English | MEDLINE | ID: mdl-17775626

ABSTRACT

Two sets of ultraviolet images of the Jovian north aurora were obtained with the Faint Object Camera on board the Hubble Space Telescope. The first series shows an intense discrete arc in near corotation with the planet. The maximum apparent molecular hydrogen emission rate corresponds to an electron precipitation of approximately 1 watt per square meter, which is about 30,000 times larger than the solar heating by extreme ultraviolet radiation. Such a particle heating rate of the auroral upper atmosphere of Jupiter should cause a large transient temperature increase and generate strong thermospheric winds. Twenty hours after initial observation, the discrete arc had decreased in brightness by more than one order of magnitude. The time scale and magnitude of the change in the ultraviolet aurora leads us to suggest that the discrete Jovian auroral precipitation is related to large-scale variations in the current system, as is the case for Earth's discrete aurorae.

SELECTION OF CITATIONS
SEARCH DETAIL
...