Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 10(19): e2301124, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37098646

ABSTRACT

The helicity of three-dimensional (3D) topological insulator surface states has drawn significant attention in spintronics owing to spin-momentum locking where the carriers' spin is oriented perpendicular to their momentum. This property can provide an efficient method to convert charge currents into spin currents, and vice-versa, through the Rashba-Edelstein effect. However, experimental signatures of these surface states to the spin-charge conversion are extremely difficult to disentangle from bulk state contributions. Here, spin- and angle-resolved photo-emission spectroscopy, and time-resolved THz emission spectroscopy are combined to categorically demonstrate that spin-charge conversion arises mainly from the surface state in Bi1 - x Sbx ultrathin films, down to few nanometers where confinement effects emerge. This large conversion efficiency is correlated, typically at the level of the bulk spin Hall effect from heavy metals, to the complex Fermi surface obtained from theoretical calculations of the inverse Rashba-Edelstein response. Both surface state robustness and sizeable conversion efficiency in epitaxial Bi1 - x Sbx thin films bring new perspectives for ultra-low power magnetic random-access memories and broadband THz generation.

2.
Nat Commun ; 14(1): 1818, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37002246

ABSTRACT

Antiferromagnetic materials have been proposed as new types of narrowband THz spintronic devices owing to their ultrafast spin dynamics. Manipulating coherently their spin dynamics, however, remains a key challenge that is envisioned to be accomplished by spin-orbit torques or direct optical excitations. Here, we demonstrate the combined generation of broadband THz (incoherent) magnons and narrowband (coherent) magnons at 1 THz in low damping thin films of NiO/Pt. We evidence, experimentally and through modeling, two excitation processes of spin dynamics in NiO: an off-resonant instantaneous optical spin torque in (111) oriented films and a strain-wave-induced THz torque induced by ultrafast Pt excitation in (001) oriented films. Both phenomena lead to the emission of a THz signal through the inverse spin Hall effect in the adjacent heavy metal layer. We unravel the characteristic timescales of the two excitation processes found to be < 50 fs and > 300 fs, respectively, and thus open new routes towards the development of fast opto-spintronic devices based on antiferromagnetic materials.

3.
Phys Rev Lett ; 126(2): 027201, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33512209

ABSTRACT

The spin absorption process in a ferromagnetic material depends on the spin orientation relative to the magnetization. Using a ferromagnet to absorb the pure spin current created within a lateral spin valve, we evidence and quantify a sizable orientation dependence of the spin absorption in Co, CoFe, and NiFe. These experiments allow us to determine the spin-mixing conductance, an elusive but fundamental parameter of the spin-dependent transport. We show that the obtained values cannot be understood within a model considering only the Larmor, transverse decoherence, and spin diffusion lengths, and rather suggest that the spin-mixing conductance is actually limited by the Sharvin conductance.

4.
Phys Rev Lett ; 124(2): 027201, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004027

ABSTRACT

Relating magnetotransport properties to specific spin textures at surfaces or interfaces is an intense field of research nowadays. Here, we investigate the variation of the electrical resistance of Ge(111) grown epitaxially on semi-insulating Si(111) under the application of an external magnetic field. We find a magnetoresistance term that is linear in current density j and magnetic field B, hence, odd in j and B, corresponding to a unidirectional magnetoresistance. At 15 K, for I=10 µA (or j=0.33 A m^{-1}) and B=1 T, it represents 0.5% of the zero field resistance, a much higher value compared to previous reports on unidirectional magnetoresistance (UMR). We ascribe the origin of this magnetoresistance to the interplay between the externally applied magnetic field and the pseudomagnetic field generated by the current applied in the spin-splitted subsurface states of Ge(111). This unidirectional magnetoresistance is independent of the current direction with respect to the Ge crystal axes. It progressively vanishes, either using a negative gate voltage due to carrier activation into the bulk (without spin-splitted bands), or by increasing the temperature due to the Rashba energy splitting of the subsurface states lower than ∼58k_{B}. We believe that UMR could be used as a powerful probe of the spin-orbit interaction in a wide range of materials.

5.
Nat Commun ; 7: 13857, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27976747

ABSTRACT

The spin-orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect transistor. However, the spin Hall effect in bulk germanium is too weak to produce spin currents, whereas large Rashba effect at Ge(111) surfaces covered with heavy metals could generate spin-polarized currents. The Rashba spin splitting can actually be as large as hundreds of meV. Here we show a giant spin-to-charge conversion in metallic states at the Fe/Ge(111) interface due to the Rashba coupling. We generate very large charge currents by direct spin pumping into the interface states from 20 K to room temperature. The presence of these metallic states at the Fe/Ge(111) interface is demonstrated by first-principles electronic structure calculations. By this, we demonstrate how to take advantage of the spin-orbit coupling for the development of the spin field-effect transistor.

6.
Nat Mater ; 15(12): 1261-1266, 2016 12.
Article in English | MEDLINE | ID: mdl-27571452

ABSTRACT

The spin-orbit interaction couples the electrons' motion to their spin. As a result, a charge current running through a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronic functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronic hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism-the Rashba effect-in the oxide two-dimensional electron system (2DES) LaAlO3/SrTiO3 to achieve spin-to-charge conversion with unprecedented efficiency. Through spin pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES and highlight the importance of a long scattering time to achieve efficient spin-to-charge interconversion.

7.
J Phys Condens Matter ; 28(16): 165801, 2016 Apr 27.
Article in English | MEDLINE | ID: mdl-26988255

ABSTRACT

We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle θ(SHE) in Ge-p (6-7 x 10(-4) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.

8.
Nat Commun ; 5: 4291, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-25000146

ABSTRACT

Perovskite materials engineered in epitaxial heterostructures have been intensely investigated during the last decade. The interface formed by an LaAlO3 thin film grown on top of a TiO2-terminated SrTiO3 substrate hosts a two-dimensional electronic system and has become the prototypical example of this field. Although controversy exists regarding some of its physical properties and their precise origin, it is universally found that conductivity only appears beyond an LaAlO3 thickness threshold of four unit cells. Here, we experimentally demonstrate that this critical thickness can be reduced to just one unit cell when a metallic film of cobalt is deposited on top of LaAlO3. First-principles calculations indicate that Co modifies the electrostatic boundary conditions and induces a charge transfer towards the Ti 3d bands, supporting the electrostatic origin of the electronic system at the LaAlO3/SrTiO3 interface. Our results expand the interest of this low-dimensional oxide system from in-plane to perpendicular transport and to the exploration of elastic and inelastic tunnel-type transport of (spin-polarized) carriers.

9.
Phys Rev Lett ; 112(10): 106602, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24679318

ABSTRACT

Through combined ferromagnetic resonance, spin pumping, and inverse spin Hall effect experiments in Co|Pt bilayers and Co|Cu|Pt trilayers, we demonstrate consistent values of ℓsfPt=3.4±0.4 nm and θSHEPt=0.056±0.010 for the respective spin diffusion length and spin Hall angle for Pt. Our data and model emphasize the partial depolarization of the spin current at each interface due to spin-memory loss. Our model reconciles the previously published spin Hall angle values and explains the different scaling lengths for the ferromagnetic damping and the spin Hall effect induced voltage.

10.
Philos Trans A Math Phys Eng Sci ; 370(1977): 4958-71, 2012 Oct 28.
Article in English | MEDLINE | ID: mdl-22987038

ABSTRACT

Future spintronics devices will be built from elemental blocks allowing the electrical injection, propagation, manipulation and detection of spin-based information. Owing to their remarkable multi-functional and strongly correlated character, oxide materials already provide such building blocks for charge-based devices such as ferroelectric field-effect transistors (FETs), as well as for spin-based two-terminal devices such as magnetic tunnel junctions, with giant responses in both cases. Until now, the lack of suitable channel materials and the uncertainty of spin-injection conditions in these compounds had however prevented the exploration of similar giant responses in oxide-based lateral spin transport structures. In this paper, we discuss the potential of oxide-based spin FETs and report magnetotransport data that suggest electrical spin injection into the LaAlO(3)-SrTiO(3) interface system. In a local, three-terminal measurement scheme, we analyse the voltage variation associated with the precession of the injected spin accumulation driven by perpendicular or longitudinal magnetic fields (Hanle and 'inverted' Hanle effects). The spin accumulation signal appears to be much larger than expected, probably owing to amplification effects by resonant tunnelling through localized states in the LaAlO(3). We give perspectives on how to achieve direct spin injection with increased detection efficiency, as well on the implementation of efficient top gating schemes for spin manipulation.

11.
Phys Rev Lett ; 109(10): 106603, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-23005314

ABSTRACT

Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in the spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. In this Letter, we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of n-Ge. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from 200 K up to room temperature. In this regime, the spin signal is reduced to a value compatible with the spin diffusion model. More interestingly, the observation in this regime of inverse spin Hall effect in germanium generated by spin pumping and the modulation of the spin signal by a gate voltage clearly demonstrate spin accumulation in the germanium conduction band.

12.
Phys Rev Lett ; 108(18): 186802, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22681101

ABSTRACT

We report results of electrical spin injection at the high-mobility quasi-two-dimensional electron system (2-DES) that forms at the LaAlO3/SrTiO3 interface. In a nonlocal, three-terminal measurement geometry, we analyze the voltage variation associated with the precession of the injected spin accumulation driven by perpendicular or transverse magnetic fields (Hanle and inverted Hanle effect). The influence of bias and back-gate voltages reveals that the spin accumulation signal is amplified by resonant tunneling through localized states in the LaAlO3 strongly coupled to the 2-DES by tunneling transfer.

13.
Phys Rev Lett ; 102(17): 176801, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19518806

ABSTRACT

Spin-conserving hopping transport through chains of localized states has been evidenced by taking benefit of the high degree of spin-polarization of CoFeB-MgO-CoFeB magnetic tunnel junctions. In particular, our data show that relatively thick MgO barriers doped with boron favor the activation of spin-conserving inelastic channels through a chain of three localized states and leading to reduced magnetoresistance effects. We propose an extension of the Glazman-Matveev theory to the case of ferromagnetic reservoirs to account for spin-polarized inelastic tunneling through nonmagnetic localized states embedded in an insulating barrier.

14.
Phys Rev Lett ; 102(21): 216804, 2009 May 29.
Article in English | MEDLINE | ID: mdl-19519126

ABSTRACT

Using a low-temperature conductive-tip atomic force microscope in cross-section geometry we have characterized the local transport properties of the metallic electron gas that forms at the interface between LaAlO3 and SrTiO3. At low temperature, we find that the carriers do not spread away from the interface but are confined within approximately 10 nm, just like at room temperature. Simulations taking into account both the large temperature and electric-field dependence of the permittivity of SrTiO3 predict a confinement over a few nm for sheet carrier densities larger than approximately 6x10(13) cm(-2). We discuss the experimental and simulations results in terms of a multiband carrier system. Remarkably, the Fermi wavelength estimated from Hall measurements is approximately 16 nm, indicating that the electron gas in on the verge of two dimensionality.

15.
Phys Rev Lett ; 102(3): 036601, 2009 Jan 23.
Article in English | MEDLINE | ID: mdl-19257375

ABSTRACT

We report on spin injection experiments at a Co/Al2O3/GaAs interface with electrical detection. The application of a transverse magnetic field induces a large voltage drop DeltaV at the interface as high as 1.2 mV for a current density of 0.34 nA.microm(-2). This represents a dramatic increase of the spin accumulation signal, well above the theoretical predictions for spin injection through a ferromagnet/semiconductor interface. Such an enhancement is consistent with a sequential tunneling process via localized states located in the vicinity of the Al2O3/GaAs interface. For spin-polarized carriers these states act as an accumulation layer where the spin lifetime is large. A model taking into account the spin lifetime and the escape tunneling time for carriers traveling back into the ferromagnetic contact reproduces accurately the experimental results.

16.
Phys Rev Lett ; 99(12): 127203, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17930549

ABSTRACT

We report on experiments and theory of resonant tunneling anisotropic magnetoresistance (TAMR) in AlAs/GaAs/AlAs quantum wells (QW) contacted by a (Ga,Mn)As ferromagnetic electrode. Such resonance effects manifest themselves by bias-dependent oscillations of the TAMR signal correlated to the successive positions of heavy (HH) and light (LH) quantized hole energy levels in GaAs QW. We have modeled the experimental data by calculating the spin-dependent resonant tunneling transmission in the frame of the 6 x 6 valence-band k.p theory. The calculations emphasize the opposite contributions of the (Ga,Mn)As HH and LH subbands near the Gamma point, unraveling the anatomy of the diluted magnetic semiconductor valence band.

17.
Phys Rev Lett ; 96(2): 027207, 2006 Jan 20.
Article in English | MEDLINE | ID: mdl-16486628

ABSTRACT

We report on tunneling magnetoresistance (TMR) experiments that demonstrate the existence of a significant spin polarization in Co-doped (La, Sr)TiO(3-delta) (Co-LSTO), a ferromagnetic diluted magnetic oxide system (DMOS) with high Curie temperature. These TMR experiments have been performed on magnetic tunnel junctions associating Co-LSTO and Co electrodes. Extensive structural analysis of Co-LSTO combining high-resolution transmission electron microscopy and Auger electron spectroscopy excluded the presence of Co clusters in the Co-LSTO layer and thus, the measured ferromagnetism and high spin polarization are intrinsic properties of this DMOS. Our results argue for the DMOS approach with complex oxide materials in spintronics.

18.
Phys Rev Lett ; 97(24): 246802, 2006 Dec 15.
Article in English | MEDLINE | ID: mdl-17280307

ABSTRACT

We propose an analytical model of spin-dependent resonant tunneling through a 3D assembly of localized states (spread out in energy and in space) in a barrier. An inhomogeneous distribution of localized states leads to resonant tunneling magnetoresistance inversion and asymmetric bias dependence as evidenced with a set of experiments with MnAs/GaAs(7-10 nm)/MnAs tunnel junctions. One of the key parameters of our theory is a dimensionless critical exponent beta scaling the typical extension of the localized states over the characteristic length scale of the spatial distribution function. Furthermore, we demonstrate, through experiments with localized states introduced preferentially in the middle of the barrier, the influence of an homogeneous distribution on the spin-dependent transport properties.

19.
Phys Rev Lett ; 90(16): 166601, 2003 Apr 25.
Article in English | MEDLINE | ID: mdl-12731988

ABSTRACT

We report on experiments in which a spin-polarized current is injected from a GaMnAs ferromagnetic electrode into a GaAs layer through an AlAs barrier. The resulting spin polarization in GaAs is detected by measuring how the tunneling current, to a second GaMnAs ferromagnetic electrode, depends on the orientation of its magnetization. Our results can be accounted for by sequential tunneling with the nonrelaxed spin splitting of the chemical potential, that is, spin accumulation, in GaAs. We discuss the conditions on the hole spin relaxation time in GaAs that are required to obtain the large effects we observe.

20.
J Synchrotron Radiat ; 8(Pt 2): 141-4, 2001 Mar 01.
Article in English | MEDLINE | ID: mdl-11512712

ABSTRACT

Epitaxial thin films provide new opportunities to explore the relationship between structure and magnetism. The bidimensionnal character of magnetic films deposited on single-crystal substrates and the occurrence of singular crystallographic structures often confer on these systems electronic and magnetic properties that cannot be found in the bulk solids. Although shape anisotropy would favour an in-plane easy axis of magnetization for thin films, Ni layers deposited on Cu(001) present a perpendicular magnetic anisotropy in a very wide thickness range. It is shown that this can be explained by a distorted structure of Ni, originating from the strain induced by the epitaxy on the Cu substrate. In the field of low-dimensional magnetism, nanostructures with a reduced lateral dimension are now being widely investigated in view of their technological applications. Thin Fe layers on MgO(001) can be cut into strips by the 'atomic saw' method: a compression of the substrate induces a dislocation slipping which 'saws' both the substrate and the Fe film into regular and separated ribbons. The observed magnetic anisotropy, with the easy axis perpendicular to the strips, is explained by a structural relaxation occurring during the structuration process. In these two studies, a precise structural characterization and simple magnetoelastic models allow the magnetic behaviour of the systems to be described. The structure of the films can be described as an elastic deformation of the bulk structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...