Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mil Med Res ; 7(1): 26, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32493512

ABSTRACT

BACKGROUND: Attrition rate in new army recruits is higher than in incumbent troops. In the current study, we identified the risk factors for attrition due to injuries and physical fitness failure in recruit training. A variety of predictive models were attempted. METHODS: This retrospective cohort included 19,769 Army soldiers of the Australian Defence Force receiving recruit training during a period from 2006 to 2011. Among them, 7692 reserve soldiers received a 28-day training course, and the remaining 12,077 full-time soldiers received an 80-day training course. Retrieved data included anthropometric measures, course-specific variables, injury, and physical fitness failure. Multivariate regression was used to develop a variety of models to predict the rate of attrition due to injuries and physical fitness failure. The area under the receiver operating characteristic curve was used to compare the performance of the models. RESULTS: In the overall analysis that included both the 28-day and 80-day courses, the incidence of injury of any type was 27.8%. The 80-day course had a higher rate of injury if calculated per course (34.3% vs. 17.6% in the 28-day course), but lower number of injuries per person-year (1.56 vs. 2.29). Fitness test failure rate was significantly higher in the 28-day course (30.0% vs. 12.1%). The overall attrition rate was 5.2 and 5.0% in the 28-day and 80-day courses, respectively. Stress fracture was common in the 80-day course (n = 44) and rare in the 28-day course (n = 1). The areas under the receiver operating characteristic curves for the course-specific predictive models were relatively low (ranging from 0.51 to 0.69), consistent with "failed" to "poor" predictive accuracy. The course-combined models performed somewhat better than the course-specific models, with two models having AUC of 0.70 and 0.78, which are considered "fair" predictive accuracy. CONCLUSION: Attrition rate was similar between 28-day and 80-day courses. In comparison to the 80-day full course, the 28-day course had a lower rate of injury but a higher number of injuries per person-year and of fitness test failure. These findings suggest fitness level at the commencement of training is a critically important factor to consider when designing the course curriculum, particularly short courses.


Subject(s)
Exercise Test/standards , Risk Assessment/methods , Teaching/standards , Adolescent , Australia , Cohort Studies , Exercise Test/methods , Female , Forecasting/methods , Humans , Male , Military Personnel/statistics & numerical data , Physical Fitness/physiology , Retrospective Studies , Teaching/statistics & numerical data , Young Adult
2.
J Biomech Eng ; 139(10)2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28753685

ABSTRACT

When simulating or conducting land mine blast tests on armored vehicles to assess potential occupant injury, the preference is to use the Hybrid III anthropomorphic test device (ATD). In land blast events, neither the effect of body-borne equipment (BBE) on the ATD response nor the dynamic response index (DRI) is well understood. An experimental study was carried out using a drop tower test rig, with a rigid seat mounted on a carriage table undergoing average accelerations of 161 g and 232 g over 3 ms. A key aspect of the work looked at the various lumbar spine assemblies available for a Hybrid III ATD. These can result in different load cell orientations for the ATD which in turn can affect the load measurement in the vertical and horizontal planes. Thirty-two tests were carried out using two BBE mass conditions and three variations of ATDs. The latter were the Hybrid III with the curved (conventional) spine, the Hybrid III with the pedestrian (straight) spine, and the Federal Aviation Administration (FAA) Hybrid III which also has a straight spine. The results showed that the straight lumbar spine assemblies produced similar ATD responses in drop tower tests using a rigid seat. In contrast, the curved lumbar spine assembly generated a lower pelvis acceleration and a higher lumbar load than the straight lumbar spine assemblies. The maximum relative displacement of the lumbar spine occurred after the peak loading event, suggesting that the DRI is not suitable for assessing injury when the impact duration is short and an ATD is seated on a rigid seat on a drop tower. The peak vertical lumbar loads did not change with increasing BBE mass because the equipment mass effects did not become a factor during the peak loading event.


Subject(s)
Lumbar Vertebrae/anatomy & histology , Lumbar Vertebrae/physiology , Materials Testing/instrumentation , Acceleration , Equipment Design , Explosions , Humans , Temperature , Weight-Bearing
3.
Ergonomics ; 58(5): 762-9, 2015.
Article in English | MEDLINE | ID: mdl-25420678

ABSTRACT

Introducing valid physical employment tests requires identifying and developing a small number of practical tests that provide broad coverage of physical performance across the full range of job tasks. This study investigated discrete lifting performance across various platform heights reflective of common military lifting tasks. Sixteen Australian Army personnel performed a discrete lifting assessment to maximal lifting capacity (MLC) and maximal acceptable weight of lift (MAWL) at four platform heights between 1.30 and 1.70 m. There were strong correlations between platform height and normalised lifting performance for MLC (R(2) = 0.76 ± 0.18, p < 0.05) and MAWL (R(2) = 0.73 ± 0.21, p < 0.05). The developed relationship allowed prediction of lifting capacity at one platform height based on lifting capacity at any of the three other heights, with a standard error of < 4.5 kg and < 2.0 kg for MLC and MAWL, respectively.


Subject(s)
Lifting , Military Personnel , Task Performance and Analysis , Work Performance , Australia , Female , Humans , Male , Reproducibility of Results
4.
Mil Med ; 174(8): 832-7, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19743739

ABSTRACT

The Australian Defence Force Parachute Training School instructs trainees to make initial ground contact using a flat foot whereas United States paratroopers are taught to contact the ground with the ball of the foot first. This study aimed to determine whether differences in foot pitch affected parachute landing technique. Kinematic, ground reaction force and electromyographic data were analyzed for 28 parachutists who performed parachute landings (vertical descent velocity = 3.4 m x s(-1)) from a monorail apparatus. Independent t-tests were used to determine significant (p < 0.05) differences between variables characterizing foot pitch. Subjects who landed flat-footed displayed less knee and ankle flexion, sustained higher peak ground reaction forces, and took less time to reach peak force than those who landed on the balls of their feet. Although forefoot landings lowered ground reaction forces compared to landing flat-footed, further research is required to confirm whether this is a safer parachute landing strategy.


Subject(s)
Aviation , Foot , Military Personnel , Muscle, Skeletal , Posture , Soil , Adult , Australia , Biomechanical Phenomena , Electromyography , Female , Humans , Male , Pilot Projects
5.
Aviat Space Environ Med ; 78(12): 1135-42, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18064918

ABSTRACT

INTRODUCTION: Although parachute landing injuries are thought to be due in part to a lack of exposure of trainees to realistic descent velocities during parachute landing fall (PLF) training, no research has systematically investigated whether PLF technique is affected by different vertical descent conditions, with standardized and realistic conditions of horizontal drift. This study was designed to determine the effects of variations in vertical descent velocity on PLF technique. METHODS: Kinematic, ground reaction force, and electromyographic data were collected and analyzed for 20 paratroopers while they performed parachute landings, using a custom-designed monorail apparatus, with a constant horizontal drift velocity (2.3 m x s(-1)) and at three realistic vertical descent velocities: slow (2.1 m x s(-1)), medium (3.3 m x s(-1)), and fast (4.6 m x s(-1)). RESULTS: Most biomechanical variables characterizing PLF technique were significantly affected by descent velocity. For example, at the fast velocity, the subjects impacted the ground with 123 degrees of plantar flexion and generated ground reaction forces averaging 13.7 times body weight, compared to 106 degrees and 6.1 body weight, respectively, at the slow velocity. Furthermore, the subjects activated their antigravity extensor muscles earlier during the fast velocity condition to eccentrically control the impact absorption. DISCUSSION: As vertical descent rates increased, the paratroopers displayed a significantly different strategy when performing the PLF. It is therefore recommended that PLF training programs include ground training activities with realistic vertical descent velocities to better prepare trainees to withstand the impact forces associated with initial aerial descents onto the Drop Zone and, ultimately, minimize the potential for injury.


Subject(s)
Aviation , Gravitation , Knee/physiology , Muscle, Skeletal/physiology , Adult , Aerospace Medicine , Ankle/physiology , Biomechanical Phenomena , Electromyography , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...