Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 269(Pt 1): 131888, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704963

ABSTRACT

Efficient conversion of sugars into fermentable sugars is a critical challenge in the cost-effective production of lignocellulosic biopolymers and biofuels. This study focuses on various sugar quantification techniques applied to Furcraea Foetida (Mauritius Hemp) samples, utilizing natural deep eutectic solvents (NADES) and deep eutectic solvents (DES) like urea, glycerol, citrates, pyrogallol (PY), and cetyltrimethylammonium bromide (CTAB). Employing a Taguchi-designed experiment, operational conditions were fine-tuned to evaluate the influence of time, concentration, and temperature on each deep eutectic solvent-based process. The emerging green solvent extraction approach demonstrated significant results, achieving notably high sugar yields compared to traditional techniques such as alkali, hot-water, and acid-mediated extraction. At a CTAB:PY molar ratio of 1:3, optimized for 60 min at 50 °C, the highest fermentable sugar (FS) yield of 0.6891 ± 0.0123 g FS/g LCB was attained-2 to 6 times higher than non-optimized values and 0.2 to 0.3 times higher than optimized traditional methods. In light of this, this research study emphasizes the pivotal significance of efficient sugar conversion through optimized deep eutectic solvent-based extraction methods, with a particular focus on Furcraea Foetida fibers, offering promising outcomes for the biofuel and biopolymer production industry.


Subject(s)
Deep Eutectic Solvents , Fermentation , Lignin , Lignin/chemistry , Deep Eutectic Solvents/chemistry , Sugars/chemistry , Solvents/chemistry , Temperature
2.
Int J Biol Macromol ; 253(Pt 2): 126781, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37696371

ABSTRACT

The current processes for producing polyhydroxyalkanoates (PHAs) are costly, owing to the high cost of cultivation feedstocks, and the need to sterilise the growth medium, which is energy-intensive. PHA has been identified as a promising biomaterial with a wide range of potential applications and its functionalization from waste streams has made significant advances recently, which can help foster the growth of a circular economy and waste reduction. Recent developments and novel approaches in the functionalization of PHAs derived from various waste streams offer opportunities for addressing these issues. This study focuses on the development of sustainable, efficient, and cutting-edge methods, such as advanced bioprocess engineering, novel catalysts, and advances in materials science. Chemical techniques, such as epoxidation, oxidation, and esterification, have been employed for PHA functionalization, while enzymatic and microbial methods have indicated promise. PHB/polylactic acid blends with cellulose fibers showed improved tensile strength by 24.45-32.08 % and decreased water vapor and oxygen transmission rates while PHB/Polycaprolactone blends with a 1:1 ratio demonstrated an elongation at break four to six times higher than pure PHB, without altering tensile strength or elastic modulus. Moreover, PHB films blended with both polyethylene glycol and esterified sodium alginate showed improvements in crystallinity and decreased hydrophobicity.


Subject(s)
Polyhydroxyalkanoates , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL
...